Background Knowledge

Number

Contents:

- A Operations with numbers
- Exponent notation
- C Factors
- Primes and composites
- E Highest common factor
- F Multiples
- G Square roots and cube roots
- H Order of operations
- Modulus or absolute value
- **J** Rounding numbers
- **K** Approximations

OPERATIONS WITH NUMBERS

There are four basic operations that are carried out with numbers:

- Addition to find a sum
 - When adding several numbers, we do not have to carry out the addition in the given order. Sometimes it is easier to change the order.
 - Adding zero does not change the value of a number.

For example: The sum of 3 and 16 is 3 + 16 = 19. The sum of 12 and 0 is 12 + 0 = 12. The sum of 187, 369, and 13 is 187 + 369 + 13 = 187 + 13 + 369 = 200 + 369= 569

• Subtraction to take away one number from another

- ► To find the **difference** between two numbers, we *subtract* the smaller from the larger.
- Subtracting zero does not change the value of a number.

For example: The difference between 37 and 82 is 82 - 37 = 45. 12 take away zero is 12 - 0 = 12.

• Multiplication to find a product

- When multiplying several numbers, we do not have to carry out the multiplication in the given order.
- Multiplying by one does not change the value of a number.
- Multiplying by zero produces zero.

For example: The product of 3 and 5 is $3 \times 5 = 15$. $3 \times 7 \times 2 = 2 \times 3 \times 7 = 42$

 $1 \times 17 = 17 \times 1 = 17$ $0 \times 17 = 17 \times 0 = 0$

• **Division** to find a **quotient**

- In the division $15 \div 3 = 5$, we say 15 is the **dividend** and 3 is the **divisor**.
- Dividing by one does not change the value of a number.
- Dividing by zero is meaningless. We say the result is **undefined**.

For example: $18 \div 1 = 18$

 $0 \div 4 = 0$ but $4 \div 0$ is undefined.

EXERCISE 1A

- 1 Find:
 - **a** the sum of 4, 8, and 11
 - c the sum of the first 12 positive whole numbers
- the difference between 23 and 41
- **d** by how much 407 exceeds 239.

b the quotient of 1008 and 36

- **2 a** What number must be increased by 249 to get 752?
 - **b** What number must be decreased by 385 to get 2691?
- 3 Jose received €285 in wages whereas Juan received €312. How much more did Juan receive than Jose?
- 4 Emma's horse float has mass 406 kg and her two horses weigh 517 kg and 561 kg. Emma's car is allowed to tow 1500 kg. Is she allowed to transport both horses at the same time?
- 5 To help buy an apartment, Agneta borrowed \$26 200 from her parents. She has already paid them back amounts of \$515, \$872, and \$664. How much does Agneta still owe her parents?

- a the product of 19 and 23
- c the product of the first 6 positive whole numbers.
- 7 How many $\pounds 3$ buckets of chips must I sell to earn $\pounds 246$?
- 8 My orchard contains 8 rows of 12 apple trees. If each tree produces 400 fruit, how many apples can I harvest?
- **9** How many laps of a 400 m track does an athlete need to complete in a 10000 m race?
- 10 An apartment complex has 6 buildings, each 28 storeys high, and on each storey there are 5 apartments.
 - **a** How many apartments are there in total?
 - Each apartment owner has to pay \$3400 per year to maintain the buildings. What is the total annual budget for maintenance?
- 11 A cargo plane can carry 115 tonnes. How many plane loads are needed to transport 7245 tonnes of supplies?

B

EXPONENT NOTATION

Rather than writing $6 \times 6 \times 6 \times 6$, we can write the same product as 6^4 . We call this **exponent notation**.

exponent, power, or index

We say that 6 is the **base** and 4 is the **exponent**, **power**, or **index**.

The following table shows the first five powers of 2.

Natural number	Factorised form	Exponent form	Spoken form
2	2	2^{1}	two
4	2×2	2^2	two squared
8	$2 \times 2 \times 2$	2^{3}	two cubed
16	$2 \times 2 \times 2 \times 2$	2^4	two to the fourth
32	$2\times 2\times 2\times 2\times 2$	2^{5}	two to the fifth

Any non-zero number raised to the power zero is equal to 1.

 $a^0 = 1, \ a \neq 0$

 0^0 is undefined.

Exa	mple 1 Self Tutor
a b	Write $3 \times 3 \times 3 \times 3 \times 8 \times 8$ in exponent form. Evaluate $2^3 \times 5^2 \times 7$.
a b	$3 \times 3 \times 3 \times 3 \times 8 \times 8 = 3^{4} \times 8^{2}$ $2^{3} \times 5^{2} \times 7 = 2 \times 2 \times 2 \times 5 \times 5 \times 7$ $= 8 \times 25 \times 7$ $= 200 \times 7$ $= 1400$

EXERCISE 1B

1	Write in exponent form:		
	a $3 imes 3$	b $5 \times 5 \times 5$	• 7×7
	d $2 \times 2 \times 2 \times 2 \times 2$		f $2 \times 5 \times 5 \times 5$
	$\textbf{g} 3\times 3\times 3\times 5\times 11\times 11$	h $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$	i $5 \times 2 \times 2 \times 5 \times 2$
2	Evaluate:		
	a 3 ²	b $2^3 \times 3$	$2^4 \times 5 \times 7$
	d $2^2 \times 5^2 \times 13$	$2 \times 5^2 \times 11$	f $2^3 \times 3^2 \times 5$

С

FACTORS

The factors of a positive integer are the positive integers which divide exactly into it.

For example, the factors of 8 are 1, 2, 4, and 8 since $8 \div 1 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ and $8 \div 8 = 1$.

3 is not a factor of 8 since $8 \div 3 = 2$ with remainder 2. We say that 8 is *not divisible* by 3. All positive integers can be split into **factor pairs**.

For example: $8 = 1 \times 8$ or 2×4 $132 = 11 \times 12$

When we write a number as a product of factors, we say it is factorised.

10 may be factorised as a product of two factors in two ways: 1×10 or 2×5 .

24

108

12 has factors 1, 2, 3, 4, 6, and 12. It can be factorised as a product of two factors in three ways: 1×12 , 2×6 , and 3×4 .

EVEN AND ODD NUMBERS

A whole number is **even** if it has 2 as a factor and thus is divisible by 2.

A whole number is **odd** if it is not divisible by 2.

EXERCISE 1C

i. 28

- 1 List *all* the factors of:
 - а 4 6 9 d 15b C f 17 1622e h g

Complete the factorisations below: 2

a $36 = 6 \times \dots$ **b** $38 = 2 \times \dots$ $48 = 12 \times \dots$ **d** $90 = 5 \times \dots$ **2** 88 = 8 × $54 = 3 \times \dots$ $72 = 12 \times \dots$ **b** $60 = 12 \times \dots$ Q

k 60

- - List all factor pairs of: 3
 - 10 **b** 14 **c** 18 20а d
 - **a** Beginning with 6, write three consecutive even numbers. 4

b Beginning with 11, write five consecutive odd numbers.

42

- Use the words "even" and "odd" to complete these sentences: 5
 - The sum of two even numbers is always а
 - Ь The sum of two odd numbers is always
 - The sum of three even numbers is always
 - **d** The sum of three odd numbers is always
 - The sum of an odd number and an even number is always e
 - f When an even number is subtracted from an odd number, the result is
 - When an odd number is subtracted from an odd number, the result is g
 - The product of two odd numbers is always h
 - The product of an even and an odd number is always

PRIMES AND COMPOSITES

A prime number is a natural number which has exactly two different factors.

A **composite** number is a natural number which has more than two factors.

For example: 11 is prime since it has only two factors: 1 and 11.

8 is composite since it has four factors: 1, 2, 4, and 8.

From the definition of prime and composite numbers we can see that:

The number 1 is neither prime nor composite.

THE FUNDAMENTAL THEOREM OF ARITHMETIC

We can write 8 as the product 2×4 , or as the product of *prime* factors $2 \times 2 \times 2$.

The fundamental theorem of arithmetic is:

Every composite number can be written as the product of prime factors in exactly one way (ignoring order).

For example, we can write 252 as $2^2 \times 3^2 \times 7$ or $3^2 \times 7 \times 2^2$, but we cannot write it as a product of factors which includes any other prime.

To express a composite number as the **product of prime numbers**, we systematically divide the number by the prime numbers which are its factors, starting with the smallest.

Example 2	Self Tutor
Express 252 a	s the product of prime factors.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\therefore 252 = 2 \times 2 \times 3 \times 3 \times 7$ $= 2^2 \times 3^2 \times 7$

EXERCISE 1D

- **a** List all the prime numbers less than 60.
 - **b** How many of these prime numbers are even? List them.
 - Find:
 - i the smallest odd prime ii all odd two-digit composite numbers less than 30
 - iii a prime number whose two digits differ by 7.
- 2 Show that the following are composites by finding a factor other than 1 or itself:

	a	985	b	7263	c	5840	d	1001		
3	Exp	ress as a product	t of	prime factors:						
	a	14	b	20	C	28	d	32	e	40
	f	70	9	56	h	96	÷.	120	j	169

Ε

HIGHEST COMMON FACTOR

A number which is a factor of two or more other numbers is called a **common factor** of those numbers.

For example, 5 is a common factor of 25 and 35.

We can find the **highest common factor (HCF)** of two or more natural numbers by first expressing them as the product of prime factors.

EXERCISE 1E

e

- **1** Find the highest common factor of:
 - **a** 8 and 12 **b** 9 and 15
 - 26 and 39
- **f** 18 and 30
- **c** 14 and 21 g
 - 18, 24, and 45
- **d** 27 and 36
- **h** 32, 60, and 108

2 Alice has a packet containing 48 green lollies. Bob has a packet containing 56 red lollies. What is the highest number of friends, including Alice and Bob, that the lollies can be shared amongst so that each person receives the same number of green lollies, and each person receives the same number of red lollies?

MULTIPLES

The multiples of any whole number have that number as a factor. They are obtained by multiplying the number by 1, then 2, then 3, then 4, and so on.

The multiples of 10 are 1×10 , 2×10 , 3×10 , 4×10 , 5×10 , 10, 20, 30, 40, 50, or

Likewise, the multiples of 15 are 15, 30, 45, 60, 75,

The number 30 is a multiple of both 10 and 15, so we say 30 is a **common multiple** of 10 and 15.

Example 4	▲) Se	If Tutor
Find common	multiples of 4 and 6 between 20 and 40.	
The multiples	s of 4 are 4, 8, 12 , 16, 20, 24 , 28, 32, 36 , 40,	
The multiples	s of 6 are 6, 12 , 18, 24 , 30, 36 , 42,	
\therefore the comm	non multiples between 20 and 40 are 24 and 36.	

The lowest common multiple (LCM) of two or more numbers is the smallest number which is a multiple of each of those numbers.

- 7 Three clocks start chiming at exactly the same instant. One chimes every 3 hours, one every 4 hours, and the other every 6 hours. When will they next chime together?
- 8 The football fields at three different schools were measured, and it was found that their perimeters were 320 m, 360 m, and 400 m. The students at each school are to run the same distance, and this must be a whole number of laps. What is the shortest distance that they need to run?

SQUARE ROOTS AND CUBE ROOTS

SQUARE ROOTS

The square root of the number a is the positive number which, when squared, gives a.

We write the square root of a as \sqrt{a} .

 $(\sqrt{a})^2 = \sqrt{a} \times \sqrt{a} = a$

For example: since $4^2 = 16$, $\sqrt{16} = 4$ since $5^2 = 25$, $\sqrt{25} = 5$.

If a number is not a perfect square, then its square root will not be a whole number. In this case, we can estimate the square root of the number by considering the square numbers either side of it. For example, 30 is between $5^2 = 25$ and $6^2 = 36$, so $\sqrt{30}$ is between 5 and 6.

CUBE ROOTS

ORDER OF OPERATIONS

When two or more operations are carried out, different answers can result depending on the **order** in which the operations are performed.

For example, consider the expression $11 - 4 \times 2$.

Bruce decided to subtract first, then multiply:

$$= \frac{11-4}{7} \times 2$$
$$= 14$$

Poj decided to multiply first, then subtract:

$$11 - 4 \times 2$$
$$= 11 - 8$$
$$= 3$$

Which answer is correct, 14 or 3?

To avoid this problem, a set of rules for the order of performing operations has been agreed upon by all mathematicians.

RULES FOR ORDER OF OPERATIONS

- Perform operations within Brackets first.
- Calculate any part involving Exponents.
- Starting from the left, perform all Divisions and Multiplications as you come to them.
- Finally, working from the left, perform all Additions and Subtractions.

In addition, we agree that:

- If an expression contains more than one set of brackets, evaluate the innermost brackets first.
- In a fraction, we assume that the numerator and denominator each have brackets around them. We must evaluate them first before doing the division.

Using these rules, Poj's method is correct in the above example, and $11 - 4 \times 2 = 3$.

Example 6	Self Tutor
Evaluate: $35 - 10 \div 2$	$\times 5 + 3$
$35 - \frac{10 \div 2}{2} \times 5 + 3$	
$= 35 - \frac{5 \times 5}{5} + 3$	{division and multiplication working from left}
= $35 - 25 + 3$	
= 10 + 3	{subtraction and addition working from left}
= 13	

EXERCISE 1H

1 Evaluate:

a	6 - 3 + 4	Ь	$7 \times 4 \div 2$	C	$3+2\times 5$	d	$3 \times 2 - 1$
e	$16 \div 4 \times 2$	f	$15 \div 5 + 2$	9	$9-6\div 3$	h	$4+7-3\times 2$
i.	$3\times4-2\times5$	J.	$3+9\div 3-2$	k	$7-9\div 3\times 2$	Т	$13 - 2 \times 6 + 7$

Example 7	Self Tutor	If you do not follow the
Evaluate: $2 \times (3 \times 6)$	(-4) + 7	order rules, you are likely to get the wrong answer.
$2 \times (3 \times 6 - 4) + 7$ = 2 × (18 - 4) + 7 = 2 × 14 + 7 = 28 + 7 = 35	{inside brackets, multiply} {evaluate expression in brackets} {multiplication next} {addition last}	

2 Evaluate:

- **b** $9 \div (7-4)$ a $(11-6) \times 3$ e $7 + (2+3) \times 5$ h $3 + (17-8) \div 9$ **d** $4 \times (6-2)$ **g** $2+3 \times (7-2)$ **j** $4 \div (3-1) + 6$ **k** $(7+11) \div (7-4)$ **l** $(4-1) \times (7+5)$ **m** $2 \times (3-4) + (7-1)$ **n** $(14-3 \times 2) \div (7-3)$ **o** $(22-3 \times 5) \times (8-3 \times 2)$
 - $(2+7) \div 3$ f $18 \div (1+5) - 1$ i $4 \times 3 - (6-2)$

Example 8	→) Self Tutor	
Evaluate:	$5 + [13 - (8 \div 4)]$	Evaluate the innermost brackets first.
5 + [13 -	$(8 \div 4)]$	
= 5 + [13 -	2] {innermost brackets first}	6-C- >
= 5 + 11	{remaining brackets next}	
= 16	{addition last}	×
3 Evaluate:		

a
$$3 \times [2 + (7 - 5)]$$

- $(13-7) \div 2 + 11$
- $3 + [32 \div (2+6)] \div 2$

- **b** $3 + [2 \times (7 5)]$ d $[14 \div (2+5)] \times 3$
- f $3 \times [(32 \div 2) + 6] 2$

Example 9	📣 Self Tutor	
Evaluate:	$\frac{16 - (4 - 2)}{14 \div (3 + 4)}$	For a fraction, we evaluate the numerator and denominator separately, then perform the division.
16 - (4 - 3)	<u>2)</u>	
$14 \div (3 + 4)$	4)	
$=\frac{16-2}{14\div7}$	{brackets first}	
$=\frac{14}{2}$	{evaluate numerator, denominator}	
=7	{do the division}	

4 Evaluate:

d $(13-4) \div 3^2$

9 $2^3 + 3 \times 5$

 $\sqrt{9}-\sqrt{4}$

5

a $\frac{19-3}{2}$	b $\frac{11-6}{4 \times 5}$	c $\frac{6 \times (7-2)}{10}$	$\frac{18-2\times7}{6\div3}$
Evaluate:			
a $3+5^2$	b $7^2 - 18$	c	$5^2 - 6 \times 2$

 $\mathbf{2}$ 48 \div (5 – 3)²

 $-2+2\sqrt{16}$

h $5^2 - 2^3 \times 3$

- f $2 \times 3^3 (11 7)^2$ $3^2 - 2 \times 5^0$
 - $3\sqrt{4} (\sqrt{7})^2$

MODULUS OR ABSOLUTE VALUE

The modulus or absolute value of a real number is its size, ignoring its sign.

The modulus of a real number is its *distance* from zero on the number line. Because the modulus is a distance, it cannot be negative.

ROUNDING NUMBERS

There are many occasions when it is sensible to give an **approximate** answer.

For example, it is unreasonable to give the exact distance between the Earth and the sun, because it is continually changing. The distance varies from its *perihelion*, about 147 million km, to its *aphelion*, about 152 million km.

We use the symbol \approx or sometimes \neq to show that an answer has been approximated.

RULES FOR ROUNDING OFF

- If the digit after the one being rounded off is less than 5 (0, 1, 2, 3, or 4) we round down.
- If the digit after the one being rounded off is 5 or more (5, 6, 7, 8, 9) we round up.

Example 10			Self Tutor
Round off: a	436 to the nearest 10	b	716 to the nearest 100
c	1050 to the nearest 100	d	19628 to the nearest 1000
a $436 \approx 440$	{round up, as 6 is grea	ter tha	an 5}
b $716 \approx 700$	{round down, as 1 is le	ess tha	in 5}
c $1050 \approx 1100$) $\{5 \text{ is rounded up}\}$		
d $19628 \approx 20$	000 {round up, as 6 is grea	ter that	an 5}

EXERCISE 1J.1

1 Round off to the nearest 10:

	_	96	L	01		OF		199		169
	d	80	0	81	C	80	a	128	e	102
	f	104	9	635	h	1822	I.	699	j	3045
2	Rou	nd off to the nea	rest	100:						
	a	215	b	264	C	3750	d	3950	e	26341
3	Rou	nd off to the nea	rest	1000:						
	а	8365	Ь	3500	c	19210	d	19650	e	114823

4 Round off to the accuracy given:

- a The height of Mount Everest is 8848 m. (to the nearest 10 m)
- **b** The surface area of Lake Baikal in Russia is 31722 km². (to the nearest 1000 km²)
- The population of New Zealand is 4749598. (to the nearest 10000)
- **d** The attendance at an English football match was 85 512 people. (to the nearest 100 people)
- The area of Australia is 7692024 km^2 . (to the nearest 100000 km^2)
- f An average weight of an adult African elephant is 5443 kg. (to the nearest 100 kg)
- g The distance between Paris and Sydney is 16950 km. (to the nearest 100 km)
- **h** The distance from Earth to the moon at perigee is 363 104 km. (to the nearest 100 000 km)
- i The population of South America in 2018 was 428240515. (to the nearest 1000000)

ROUNDING DECIMAL NUMBERS

A survey found that a total of 6428 flights were taken by 825 people last year. It is not sensible to give the average number of flights per person as 7.791515152. An approximate answer of 7.8 is more appropriate.

Example 11 Self Tutor Round: a 8.43 to one decimal place b 3.5169 to two decimal places. a 8.43 ≈ 8.4 {round down, as 3 < 5}</td> b 3.5169 ≈ 3.52 {round up, as 6 > 5}

EXERCISE 1J.2

- 1 Round the following to the number of decimal places stated in brackets:
 - **b** 6.181 [2] **c** 3.25 **a** 6.181 [1] [1] **d** 17.403 [2] $2.131\,58$ [3] **f** 0.1940 [1] 0.0972[2] 102.382[2] e g h
- 2 In 2009 Usain Bolt ran 100 m in 9.58 seconds. Round this time to 1 decimal place.
- **3** The average height of children in a class was 1.435 m. Round this height to 2 decimal places.
- 4 The thickness of a sheet of paper is 0.012 cm. Round this thickness to 2 decimal places.
- 5 The number pi is a mathematical constant. The first six digits of pi are 3.14159.
 Round pi to: a 1 decimal place b 3 decimal places c 4 decimal places.
- 6 The fraction $\frac{5}{19} \approx 0.263157895$. Round this number to:
 - a 1 decimal place b 2 decimal places c 6 decimal places.
- **7** Evaluate, giving your answer to 3 decimal places:
 - **a** $\sqrt{2}$ **b** $\sqrt{5}$ **c** $\sqrt{23}$ **d** $\sqrt[3]{4}$ **e** $\sqrt[3]{-15}$ **f** $\sqrt[3]{450}$

8 Calculate the following, rounding your answers to 2 decimal places:

- a $(16.8 + 12.4) \times 17.1$ b $16.8 + 12.4 \times 17.1$ c $127 \div 9 5$ d $127 \div (9 5)$ e $37.4 16.1 \div (4.2 2.7)$ f $\frac{16.84}{7.9 + 11.2}$ g $\frac{27.4}{3.2} \frac{18.6}{16.1}$ h $\frac{27.9 17.3}{8.6} + 4.7$ i $\frac{0.0768 + 7.1}{18.69 3.824}$
- **9** Over a 23 game water polo season, Kerry scored 40 goals for her team. Find Kerry's average number of goals per game, correct to 2 decimal places.

10 Wang used a tape measure to check the length of his kitchen bench. After viewing the tape, he recorded the length as 2.45 m, which he rounded up to 2.5 m. When his mother asked him about the length, he said it was about 3 m.

Explain what Wang has done wrong, and discuss why we need to be careful when we make approximations.

ROUNDING OFF TO SIGNIFICANT FIGURES

The first significant figure of a decimal number is the first (left-most) non-zero digit.

- For example: the first significant figure of 4567 is 4
 - the first significant figure of 0.01234 is 1.

Every digit to the right of the first significant figure is regarded as another significant figure.

To round off to a number of significant figures:

Count off the specified number of significant figures then look at the next digit.

- If the digit is less than 5, round down.
- If the digit is 5 or more, round **up**.

Delete all figures following the significant figures, replacing with 0s where necessary.

Exan	nple 12	Self Tutor
Rou	a 3.461 to 2 significant figuresc 708 to 1 significant figure	b 0.007 24 to 2 significant figuresd 20.158 to 3 significant figures.
a	$3.461 \approx 3.5$ {2 significant figures} This is the 2nd significant figure, so we loo The 6 tells us to round the 4 up to a 5 and	ok at the next digit which is 6. delete the remaining digits.
b	0.007 24 ≈ 0.0072 {2 significant figures} These zeros at the front are place holders a The first significant figure is 7, and the sec The 4 tells us to leave the 2 as it is and de	and so must stay. cond significant figure is 2. lete the remaining digits.
c	$708 \approx 700 \{1 \text{ significant figure}\}\$ 7 is the first significant figure so it has to b The 0 tells us to keep the original 7 in th These two zeros are place holders. They are to make sure the 7 has value 700.	be rounded. The hundreds place, so we convert the 08 into 00. The not significant figures, but they need to be there
d	20.158 \approx 20.2 {3 significant figures} This 0 is significant as it lies between two The third significant figure is 1. The 5 tells us to round the 1 up to a 2 and	non-zero digits. delete the remaining digits.

In IB examinations you are expected to give answers to 3 significant figures unless otherwise specified in the question.

EXERCISE 1J.3

1	Round to 2 significant figures:							
	a	128	b	8342	C	2.568	d	0.0134
	e	163870	f	1.086	9	3958	h	6.611
2	Rot	and to 3 significant fig	gure	s:				
	a	83064	b	10044	C	0.10526	d	31.695
	e	70.707	f	4.0007	9	0.03671	h	19.989
3	Roi	and to 4 significant fig	gure	s:				
	a	16.382	b	438.207	C	6873681	d	0.028885
4	The	e exact crowd size at a	roc	ck concert was 96 257	pe	ople. Round the crowe	d si	ze to:
	a	1 significant figure		b 2 significant	fig	ures c 3 si	gnif	ficant figures.
5	5 Evaluate the following, giving your answers to 3 significant figures:							
	a	$\sqrt{7}$	b	2π	c	$36 \div 17$	d	517 imes 3802
	e	$(0.986)^5$	f	$\frac{16.3 - 2.68}{3.1}$	9	$\sqrt{5.4 - 2.18}$	h	$\frac{9.58}{\sqrt{2.8}}$

- A theatre has 32 rows with 28 seats in each. Find the total number of seats, rounding your answer to 2 significant figures.
- 7 A ballroom has dimensions $30.1 \text{ m} \times 8.5 \text{ m}$. Find its area, rounding your answer to 3 significant figures.
- 8 The proceeds of a garage sale were \$752.25, and this was shared equally between 4 people. Calculate the amount each person received:
 - a to 3 significant figures

b to 5 significant figures.

APPROXIMATIONS

the cost of 3 airline tickets at \$213 each

the cost of 55 litres of fuel at $\pounds 1.49$ /litre.

A fast way of estimating a calculation is to perform a **one figure approximation**:

- Leave single digit numbers as they are.
- Round all other numbers to one significant figure.
- Perform the calculation.

Example 13						Self Tutor	
Estimate:	a	872×52	Ь	$61812 \div 384$	c	4.37×0.482	DEMO
	a	872×52	b	$61812 \div 384$	c	4.37×0.482	
		$\approx 900 \times 50$		$\approx 60000 \div 400$		$\approx 4 \times 0.5$	L,
		≈ 45000		$\approx 600 \div 4$		≈ 2	
				≈ 150			

EXERCISE 1K

2

1 Estimate using a one figure approximation:

a	32×6	Ь	58×7	C	81×30	d	207×3	e	487×50
f	6117×4	9	48×23	h	61×42	i,	103×47	j	3125×18
k	422×307	I.	3818×27	m	2.7×1.15	n	5.36×0.68	0	28.37×6.13
Esti	mate using a one	fig	gure approximation	ion:					
a	$86 \div 3$		b 64 ÷ 5		c 512÷	21	d	610	$\div 43$
e	$4182\div19$		f $78638 \div 6$	82	g 318÷	62	h	473	$320 \div 193$
1	$0.628 \div 3$		$46.1 \div 5.2$	2	k 631.7	÷().29	18.7	$7 \div 3.86$

- **3** Estimate using one figure approximations:
 - a the cost of 8 kg of apples at €2.80/kg
 - c the cost of 7 theatre tickets at \$87.30 each
- 4 Estimate using one figure approximations:
 - **a** the distance travelled if Brodie drives for 4.2 hours at 63 km h^{-1}
 - **b** the number of days in 14 years
 - c the average weight carried per truck if 423 tonnes of cargo is divided equally between 18 trucks.

Ь

d

Background Knowledge

Algebra

Contents:

- A Algebraic notation
- **B** Collecting like terms
- C Expansion and simplification
- Adding and subtracting algebraic fractions
- E Multiplying and dividing algebraic fractions
- F Factorisation
- **G** Substitution
- H Linear equations
- Linear inequalities
- J Rational equations
- **K** Power equations
- L Formulae
- M Formula rearrangement

We use **algebra** to write mathematical ideas in a convenient way. In algebra we use letters or symbols to represent unknown quantities called *variables*, whose values can vary depending on the situation.

You should be familiar with these important words associated with algebra:

- 2x + 3 is an **expression** for the quantity which is three more than twice x.
- 2x + 3 = 5 is an equation which says that the quantity 2x + 3 has the value 5. We can solve the equation to find the value of x.
- 2x + 3 > 5 is an **inequality** or **inequation** which says that the value of 2x + 3 is more than 5.
- y = 2x + 3 is a **formula** which connects the two **variables** x and y. If we know the value of one of the variables then we can **substitute** this value to determine the other variable. We can also **rearrange** formulae to write them in more convenient forms.

ALGEBRAIC NOTATION

In algebra we agree:

- to leave out the "×" signs between multiplied quantities
- to write numerals (numbers) first in any product
- where products contain two or more letters, we write them in **alphabetical order**.

For example:

- 3b is used rather than $3 \times b$ or b3
- 3bc is used rather than 3cb.

Example 1		🔊 Self Tutor
Write in product notation:		
a $t imes 6s$	b $4 \times k + m \times 3$	• $3 \times (r+s)$
a $t imes 6s$	b $4 \times k + m \times 3$	c $3 \times (r+s)$
= 6st	=4k+3m	=3(r+s)

WRITING SUMS AS PRODUCTS

Sums of identical terms can be written using product notation.

For example,	$3 + 3 + 3 + 3 = 4 \times 3$	$\{4 \text{ lots of } 3\}$
	$b+b+b+b=4\times b=4b$	$\{4 \text{ lots of } b\}$

Example 2		Self Tutor
Simplify:	a $r+r+r+s+s$	b $d+d-(a+a+a+a)$
	a $r+r+r+s+s$ = $3r+2s$	$ b \qquad d+d-(a+a+a+a) \\ = 2d-4a $

• $a \times a + 2 \times b \times b \times b - a \times b \times b$

EXPONENT NOTATION

We use **exponent** or **index notation** to simplify algebraic expressions in the same way as we did for numbers.

For example, $3 \times 3 \times 3 \times 3 = 3^4$ and $b \times b \times b \times b = b^4$.

	Example 3			◄)) Self Tutor
	Simplify:	a $8 \times b \times b$	$\times a \times a \times a$	b $k+k-3 imes d imes d imes d$
		$a \qquad 8 \times b = 8a^3b^2$	$\times b \times a \times a \times a$	b $k+k-3 \times d \times d \times d$ $= 2k-3d^3$
XER	CISE 2A			
1 Si	mplify using prod	duct notation:		
a	$5 \times x$		b c imes 2	q imes 7
d	$f \times 4g$		\bullet 6 $q imes p$	f $r imes 9s$
9	$2a \times 3b$		h $m \times 4n$	i $a \times 5 \times b$
l	$q \times 2 \times p$		k $j imes k imes l$	$p \times h \times d$
2 Si	mplify:			
a	$p \times q + r$		b $4 \times x + 5 \times y$	c $2 imes a-b$
d	$b \times a - c$		\bullet $b-a \times c$	f $f-g imes 7$
9	$c \times a + d \times a$		h $12 - r \times s \times 6$	$3 \times (x+y)$
l	$5 \times (d-1)$		(w-x) imes 8	$ p \times q \times (r-2) $
3 Si	mplify using pro	duct notation:		
a	b+b		b $q+q+q$	x + x + y + y + y + y + y + y + y + y +
d	c+c+c+e		2 3+z+y+y	f $a + a + a + a + 7$
9	g+g+2+g	+g	h $3 - (d + d + d)$	s-t+t
l	s - (t + t)		4 + r + r + r + r	1 $2 + a + a + b + b$
4 W	rite in expanded	form:		We use exponents
a	a^4	b f^2	c $5a^2$	and product notation
d	$(5a)^2$	\mathbf{c} $4p^3$	f $(4p)^3$	to simplify the look
9	$3t^5$	h $5x^2y$	$5(xy)^2$	of an expression.
l	$7f^2g^3$	$p^2 + 2q$	$p^3 - 3q^2$	
5 W	rite in simplest fo	orm:		
a	$3 \times k \times k$		b $4 \times a \times a \times a$	c $2 \times d \times d \times d \times d$
d	$4 \times p \times q \times q$		$ 2 3 \times f \times g \times f \times $	$f w \times w \times x \times y \times y$
9	$m+m \times m$		$h n \times n \times n + n$	y imes y - z imes z imes z imes
l	$a \times a + 7 \times a$		$ 8 \times b - b \times b \times b $	b
	$2 \times p \times q \times q$	$+ 6 \times r \times r \times$	<i>s</i> m	$h \times h \times 2 - h \times j$

COLLECTING LIKE TERMS

In algebra, like terms are terms which contain the same variables to the same exponent.

For example:

B

- 2xy and -5xy are like terms
- a^2 and -3a are unlike terms because the exponents of a are not the same.

Algebraic expressions can often be simplified by adding or subtracting like terms. This is sometimes called **collecting like terms**.

Consider $2a + 4a = \underbrace{a+a}_{\text{"2 lots of }a"} + \underbrace{a+a+a+a}_{\text{"4 lots of }a"}$.

In total we have 6 lots of a, so 2a + 4a = 6a.

Example 4

Simplify, where possible, by collecting like terms:

a $3x + 2x$ d $3bc + bc$	b $7a - 3a$ c $-2x + 3 - x$ e $2x - x^2$	
a $3x + 2x$ = $5x$	b $7a - 3a$ = $4a$ c $-2x + 3 - x$ = $-3x + 3$ $\{-2x \text{ and } -x \text{ are like terms}\}$	ms}
	• $2x - x^2$ is in simplest form { $2x$ and $-x^2$ are unlike terms}	

EXERCISE 2B

- 1 Simplify, where possible, by collecting like terms:
 - a 2 + x + 4
 - **d** a + a + 7
 - **9** 5y 3y
 - 5x+5
 - m 3x x
- **2** Simplify, where possible:
 - a 8p-8p
 - d 7pq pq
 - 3w + 4w + 5w
 - 2m + 3m 5m
 - **m** $s + 3s + 4s^2$

- **b** q + 5 + 6
- e d+d
- h 4z-z
- k $5w^2 4w^2$
- **n** 3ab + 6ab
- **b** 8p-p
- e ab+3ab
- h 8xy + 5yx
- 5d + 4d 9
- n $2x^2 + 2x + 2$

c b+3+b+bf q+1+q+4i g^2+g^2 l $3x-3x^2$ o m+m+m+m

Self Tutor

f $3q^2 - q^2$

8p-8

- 2z + 5z 4z
- $3g + 4g 7g^2$
- $2a^2 b^2$

3 Simplify, where possible:

4

a e i	7x + x b $7x$ $k + 4k - 5$ f $n - y$ $-y8y$ j $8y$	-x -6n-5n -y	c $-7x - x$ g $-11m - 4m$ k $8yy$	d $p^2 + 2p$ h $4j - 9j + 4$ l $y4y$				
	Example 5 Simplify, by collecting like a $2+3a-3-2a$	e terms:	b $x^2 - 2x + 3x - 3$	⊲ Self Tutor - 2x ²				
	a $2+3a-3-2a$ = $3a-2a+2-3$ = $a-1$ {3a and $-2a$ are li 2 and -3 are like	ke terms, terms}	b $x^2 - 2x + 3$ = $x^2 - 2x^2 - 2x^2 - 2x^2 - 2x^2 - 2x^2 - 2x^2 + x^2 + x^2$ { x^2 and $-2x^2 - 2x^2 $	$3x - 2x^2$ 2x + 3x ² are like terms, ² are like terms}				
Simplify:								
a	x + 5 - 3x - 6	b $8t + 4 - 3$	t - 1	x + 5y - 6y - 3x				
d	pq + 3 + 5pq - 7	e $-cd+2cd$	l + 9cd	f $2a - 6 + 6 - 3a$				
9	$12x^2 + 5 - 7x^2 - 7$	h $-5n+3-$	+2n-6	2v - 7v + w - 6w				
j	$-3x^3 - 2x^2 + 3x^3 - x^2$	4a - 3b - 3b	-a - 4b	-2z - 3 - 3z - 4				
m	2p + pq - 3pq - p	-6mn+3	3m - mn - 5m					

EXPANSION AND SIMPLIFICATION

We use the following rules to expand brackets in algebraic expressions:

٠	a(b+c) = ab + ac	{distributive law}
•	(a+b)(c+d)=ac+ad+bc+bd	{FOIL rule}
•	$(a+b)(a-b) = a^2 - b^2$	{difference between two squares}
•	$(a+b)^2 = a^2 + 2ab + b^2$	{perfect squares}

Once an algebraic expression has been expanded, it can be simplified by collecting like terms.

Examp	ole 6	Self Tutor
Expan	nd and simplify:	
a 3	(x+4) + 2x	b $(3x-2)(x+3)$
a 3	2(x+4) + 2x = 3x + 12 + 2x	{distributive law}
	= 5x + 12	{collecting like terms}
b (:	$3x - 2)(x + 3) = 3x^2 + 9x - 2x$	$-6 $ {FOIL rule}
	$=3x^2+7x-6$	{collecting like terms}

EXERCISE 2C

1 Expand and simplify using the distributive law a(b+c) = ab + ac:

a 2(x+4)b 3(x-1)c -2(x+2)d -(2-x)e x(x+1)f 5(x+4)+3xg 4(x-2)+7h x(x-2)+xi $x(3-x)+x^2$ j 3(2x-1)+5k 6-2(3x-5)l 3(2x+5)+4(5+4x)m 2x(x+1)-3xn 2(a-3)-a(2-a)o 5(2a-3b)-6(a-2b)

2 Expand and simplify using the rule (a+b)(c+d) = ac + ad + bc + bd:

a (x+2)(x-3)b (x-1)(x+4)c (x+3)(x+2)d (2x+3)(x+1)e (3x+4)(x+2)f (5x-2)(2x+1)g (x+2)(3x-5)h (7-2x)(2+3x)i (1-3x)(5+2x)j (3x+4)(5x-3)k (1-3x)(2-5x)l (7-x)(3-2x)m (5-2x)(3-2x)n -(x+1)(x+2)o -2(x-1)(2x+3)

3 Expand using the difference between two squares rule $(a+b)(a-b) = a^2 - b^2$:

a (x+6)(x-6)b (x+8)(x-8)c (2x-1)(2x+1)d (3x-2)(3x+2)e (4x+5)(4x-5)f (5x-3)(5x+3)g (3-x)(3+x)h (7-x)(7+x)i (7+2x)(7-2x)j $(x+\sqrt{2})(x-\sqrt{2})$ k $(x+\sqrt{5})(x-\sqrt{5})$ l $(2x-\sqrt{3})(2x+\sqrt{3})$

4 Expand and simplify using the perfect square expansion rule $(a+b)^2 = a^2 + 2ab + b^2$:

a $(x+5)^2$ b $(x+7)^2$ c $(x-2)^2$ d $(x-6)^2$ e $(3+x)^2$ f $(5+x)^2$ g $(11-x)^2$ h $(10-x)^2$ i $(2x+7)^2$ j $(3x+2)^2$ k $(5-2x)^2$ l $(7-3x)^2$

D ADDING AND SUBTRACTING ALGEBRAIC FRACTIONS

To add or subtract algebraic fractions, we combine them into a single fraction with the **least common denominator** (LCD).

Example 7		Self Tutor
Write as a single fraction	n:	
a $2 + \frac{3}{x}$	b $\frac{x-1}{3} - \frac{x+3}{2}$	
a $2 + \frac{3}{x}$	b $\frac{x-1}{3} - \frac{x+3}{2}$	
$=2\left(rac{x}{x} ight)+rac{3}{x}$	{LCD = x} = $\frac{2}{2} \left(\frac{x-1}{3} \right) - \frac{3}{3} \left(\frac{x+3}{2} \right)$	$\Big) \qquad \{LCD = 6\}$
$=rac{2x+3}{x}$	$=\frac{2(x-1)-3(x+3)}{6}$	
	$=\frac{2x-2-3x-9}{2x-2-3x-9}$	
	$\frac{6}{-x-11}$	
	$=$ $-\frac{6}{6}$	
EXERCISE 2D 1 Write as a single fraction a $3 + \frac{x}{5}$ c $\frac{2+x}{3} + \frac{x-4}{5}$	on: b $1 + \frac{3}{x}$ c $3 + \frac{x-2}{2}$ f $\frac{2x+5}{4} - \frac{x-1}{6}$ g $\frac{2}{x} + \frac{x}{2}$	d $3 - \frac{x-2}{4}$ h $\frac{x+2}{3} - \frac{x+1}{x}$
Example 8		Self Tutor
Write $\frac{3x+1}{2} - 2$	$\frac{3x+1}{2} - 2 = \left(\frac{3x+1}{2}\right) - 2\left(\frac{x-2}{2}\right)$	$\{LCD = (x - 2)\}$
x-2 as a single fraction.	$\begin{array}{c} x-2 \\ (3x+1)-2(x-2) \end{array}$	
	$=\frac{1}{x-2}$	
	$= \frac{5x+1-2x+4}{x-2}$	
	$=\frac{x+5}{x-2}$	
2 Write as a single fraction	on:	

a $1 + \frac{3}{x+2}$	b $-2 + \frac{3}{x-4}$	c $-3 - \frac{2}{x-1}$
d $\frac{2x-1}{x+1} + 3$	$ 3 - \frac{x}{x+1} $	f $-1 + \frac{4}{1-x}$
Write as a single fraction:		
$3 \downarrow 2$	1 1	3 4

3

a $\frac{3}{x+2} + \frac{2}{x}$ b $\frac{1}{x-2} - \frac{1}{x-3}$ c $\frac{3}{x+1} - \frac{4}{x-2}$ d $\frac{5x}{x-4} + \frac{3x-2}{x+4}$ e $\frac{3x}{2x-5} + \frac{2x+5}{x-2}$ f $\frac{2x+1}{x-3} - \frac{x+4}{2x+1}$ Ε

MULTIPLYING AND DIVIDING ALGEBRAIC FRACTIONS

To **multiply** two or more fractions, we multiply the numerators to form the new numerator, and we multiply the denominators to form the new denominator.

$$\frac{a}{b} imes \frac{c}{d} = \frac{a imes c}{b imes d} = \frac{ac}{bd}$$

To divide by a fraction we multiply by its reciprocal.

 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$

Example 9		Self Tutor
Find: a	$\frac{x}{3} \times \frac{y}{x^2}$	b $\frac{2a}{b} \div \frac{6}{a}$
а	$\frac{{}^{1}\boldsymbol{\varkappa}}{3}\times\frac{y}{\boldsymbol{x}^{\boldsymbol{\mathcal{I}}}}$	b $\frac{2a}{b} \div \frac{6}{a}$
	$=rac{1 imes y}{3 imes x}$	$=\frac{2a}{b} imesrac{a}{6}$
	$=\frac{y}{3x}$	$=rac{{oldsymbol{\mathcal{Z}}a imes a}}{b imes {oldsymbol{eta}}_3}$
		$=\frac{a^2}{3b}$

Always look for common factors to cancel.

EXERCISE 2E

1 Find: a $\frac{x}{4} \times \frac{7}{y}$ b $\frac{a}{5} \times \frac{5}{b}$ c $\frac{3}{x} \times \frac{y}{12}$ d $\frac{m^2}{4} \times \frac{6}{m}$ e $\frac{x}{6} \times \frac{2}{x}$ f $\frac{6}{t^2} \times 5$ g $\frac{x}{y^2} \times \frac{3y}{8}$ h $\frac{x}{y} \times \frac{y}{x}$ i $\left(\frac{4}{k}\right)^2$ j $\frac{10a^2}{b} \times \frac{3b}{2a}$ k $\frac{7m^3}{3} \times \frac{4}{mn}$ l $\frac{2}{x^2} \times \frac{5y}{x} \times \frac{x^5}{8y^2}$

Algebraic factorisation is the reverse process of expansion.

For example, $2x^2 - 5x - 3$ can be *factorised* into two *linear factors*:

When asked to factorise an expression:

Step 1: Look for any **common factors** to take out. *Step 2*: Look for any of the following types: • difference between two squares $a^2 - b^2 = (a+b)(a-b)$ $a^2 + 2ab + b^2 = (a+b)^2$ • perfect square • sum and product type $x^2 + bx + c$ $x^2 + bx + c = (x + p)(x + q)$ where p + q = b and pq = c. sum and product type $ax^2 + bx + c$, $a \neq 0$ or 1 Find two numbers p and q such that p + q = b and pq = ac. • Replace bx by px + qx. Complete the factorisation. Example 10 Self Tutor **b** $4x^2 - 1$ Fully factorise: **a** $3x^2 - 12x$ $x^2 - 12x + 36$ $3x^2 - 12x$ $\{3x \text{ is a common factor}\}\$ а Remember that all = 3x(x-4)factorisations can be checked by expansion! **b** $4x^2 - 1$ {difference between two squares} $=(2x)^2-1^2$ =(2x+1)(2x-1) $x^2 - 12x + 36$ {perfect square form} $= x^{2} + 2(x)(-6) + (-6)^{2}$ $=(x-6)^2$

EXERCISE 2F

1 Fully f	actorise:			
a 2 <i>x</i>	c-6	3x + 3	c	6-2x
d x^2	² + 2 <i>x</i>	$3x - x^2$	f	$3x^2 + 9x$
g 2a	$x^2 + 7x$ h	$4x^2 - 10x$	i,	$6x^2 - 15x$
2 Fully f	actorise:			
a x^2	$^{2}-36$	$9x^2 - 25$	c	$16x^2 - 1$
d 2a	$c^2 - 8$	$3x^2 - 9$	f	$4x^2 - 20$
3 Fully f	actorise:			
a x^2	$x^2 - 8x + 16$	$x^2 - 10x + 25$	c	$2x^2 - 8x + 8$
d 16	$6x^2 + 40x + 25$	$9x^2 + 12x + 4$	f	$x^2 - 22x + 121$

Example 11 Self Tutor Fully factorise: a $3x^2 + 12x + 9$ **b** $-x^2 + 3x + 10$ $3x^2 + 12x + 9$ $\{3 \text{ is a common factor}\}\$ а $=3(x^2+4x+3)$ $\{sum = 4, product = 3\}$ = 3(x+1)(x+3) $-x^2 + 3x + 10$ Ь $= -(x^2 - 3x - 10)$ {removing -1 as a common factor to make the coefficient of x^2 be 1} = -(x-5)(x+2) $\{sum = -3, product = -10\}$

4 Fully factorise:

a	x^2 –	+9x+8	;	Ь	$x^2 + 7x + 12$	c	$x^2 - 7x - 18$	
d	x^2 –	+4x-2	1	e	$x^2 - 9x + 18$	f	$x^2 + x - 6$	
9	$-x^2$	$x^{2} + x + 2$	2	h	$3x^2 - 42x + 99$	i	$-2x^2 - 4x - 2$	
J	$2x^2$	+ 6x -	20	k	$2x^2 - 10x - 48$	1	$-2x^2 + 14x - 1$	12
m	-3a	$x^2 + 6x$	- 3	n	$-x^2 - 2x - 1$	•	$-5x^2 + 10x + 4$	40
		Exan	nple 12				Self Tutor	
		Full	y factorise	:				
		a	$2x^2 - x - x$	- 10	b ($5x^2 - 25x + 14$		
		a	$2x^2 - x - x$	– 10 has	$ac = 2 \times -10 =$	-20.		
			The facto	ors of -20	which add to -1	are -5 and $+4$		
			$\therefore 2x^2 -$	-x - 10 =	$2x^2 - 5x + 4x - 5x + 5$	- 10		
				=	x(2x-5) + 2(2)	(x-5)		
				=	(2x-5)(x+2)			

5 Fully factorise:

a	$2x^2 + 5x - 12$	b	$3x^2 - 5x - 2$	C	$7x^2 - 9x + 2$
d	$6x^2 - x - 2$	e	$4x^2 - 4x - 3$	f	$10x^2 - x - 3$
9	$2x^2 - 11x - 6$	h	$3x^2 - 5x - 28$	÷.	$8x^2 + 2x - 3$
j	$10x^2 - 9x - 9$	k	$3x^2 + 23x - 8$	Т	$6x^2 + 7x + 2$
m	$-4x^2 - 2x + 6$	n	$12x^2 - 16x - 3$	0	$-6x^2 - 9x + 42$
Р	$21x - 10 - 9x^2$	q	$8x^2 - 6x - 27$	r	$12x^2 + 13x + 3$
S	$12x^2 + 20x + 3$	t	$15x^2 - 22x + 8$	u	$14x^2 - 11x - 15$

G

SUBSTITUTION

Given an algebraic expression, we can **substitute** values for the unknowns and hence **evaluate** the expression.

When we substitute a negative number, we place it in brackets to make sure the negative sign is evaluated correctly.

Example 13		Self Tutor
If $p = -2$, $q = 3$, and $r = a$ p + 5q	= 4, find the value of: b $pr - 7q$	$\frac{2r-4q}{1-pr}$
a $p + 5q$ = $(-2) + 5 \times 3$ = $-2 + 15$ = 13	b $pr - 7q$ = $(-2) \times 4 - 7 \times 3$ = $-8 - 21$ = -29	$ \begin{array}{l} \frac{2r - 4q}{1 - pr} \\ = \frac{2 \times 4 - 4 \times 3}{1 - (-2) \times 4} \\ = \frac{8 - 12}{1 - (-8)} \\ = \frac{-4}{9} \end{array} $

EXERCISE 2G

1	If $x = 5$ and $y = -1$,	find the value of:		
	a $3x$	b $x+2y$	c $-4y-x$	d $2xy$
	\bullet $-x+3y$	f $6-xy$	g $2x - 4y$	h $4xy + 2x$
2	If $l = 2$, $m = -3$, and	n = -1, find the value	of:	
	a $4l$	b -n	c 2mn	d lmn
	\circ $2l+m$	f $4m-3l$	g $ml-2n$	h $nl-2mn$

3	If $x = 3$, $y =$	2, and $z = -1$, find the va	llue of:	
	$\frac{x}{y}$	b $\frac{x-y}{z}$	$\frac{x+z}{2y}$	d $\frac{3z}{x+y}$
4	If $e = 4$, $f =$	2, and $g = -3$, evaluate:	0	
	$\frac{g}{e}$	b $\frac{2g+e}{f}$	$rac{fg}{e}$	d $\frac{g-f}{e+g}$
		Example 14 If $x = 2$, $y = -4$, and a y^2 b y^2 b y^2 b y^2 c $(-4)^2$ b y^2 c $(-4)^2$ c $($		lf Tutor
5	If $a = 4$, $b =$ a b^2 e $a^3 + b^3$	-1, and $c = -3$, evaluate: b c^{3} f $(a+b)^{3}$	c $a^2 + c^2$ g $(2c)^2$	d $(a + c)^2$ h $2c^2$
		Example 15 If $k = 5$, $l = -1$, and a $\sqrt{k+l}$	$ m = 2, \text{ evaluate:} $ $ \sqrt{m^2 + 3k} $	lf Tutor
		a $\sqrt{k+l}$ = $\sqrt{5+(-1)}$ = $\sqrt{4}$ = 2	b $\sqrt{m^2 + 3k}$ = $\sqrt{2^2 + 3(5)}$ = $\sqrt{19}$	
6	If $k = -2$, $l =$	= 3, and $m = 7$, evaluate:		
	a $\sqrt{l+k}$	b $\sqrt{m+1}$	- <u>3l</u>	$\sqrt{lm-2k}$
	d $\sqrt{k^2+m^2}$	${f e}$ $\sqrt{l^2-c}$	m	f $\sqrt{m^2+l^2}$
ł	1		LINEA	AR EQUATIONS

Linear equations are equations which can be written in the form ax + b = 0 where x is the **variable** or **unknown**, and a, b are constants.

To solve linear equations we need to rearrange the equation to **isolate** the unknown. We do this by looking at how the expression involving the unknown was built up, then undoing it using **inverse operations**. The inverse operations are performed on both sides of the equation to **maintain the balance**.

Once you have found a solution, you should check it is correct by **substituting** it back into the original equation.

Example 16	Tutor
Solve for x: a $2x - 3 = 5$ b $8 - 4x = -2$	
a $2x-3=5$ $2x-3+3=5+3$ {adding 3 to both sides} $\therefore 2x=8$	The inverse of -3 is $+3$. The inverse of $\times 2$ is $\div 2$.
$\therefore \frac{2x}{2} = \frac{8}{2} \qquad \{ \text{dividing both sides by } 2 \} \\ \therefore x = 4 \qquad Check: 2 \times 4 - 3 = 8 - 3 = 5 \checkmark$	
b $8-4x = -2$ $\therefore 8-4x-8 = -2-8$ {subtracting 8 from both sides} $\therefore -4x = -10$	
$\therefore \frac{-4x}{-4} = \frac{-10}{-4} \qquad \{\text{dividing both sides by } -4\}$ $\therefore x = \frac{5}{2} \qquad Check: 8 - 4 \times \left(\frac{5}{2}\right) = 8 - 10 = -2$	✓

Example 17		Self Tuto	
Solve for <i>x</i> :	a $\frac{x}{4} + 7 = 5$	b $\frac{1}{3}(x+2) = 6$	
$\frac{a}{x}$	+7 = 5	The	inverse of $+7$ is -7 .
$\therefore \frac{x}{4} + 7$	$x - 7 = 5 - 7$ $\frac{x}{4} = -2$	{subtracting 7 from both sides}	
$\therefore \frac{x}{4}$	$\times 4 = -2 \times 4$	{multiplying both sides by 4}	r ogens
	: $x = -8$	<i>Check</i> : $\frac{-8}{4} + 7 = -2 + 7 = 5$ \checkmark	
b $\frac{1}{3}$	(x+2) = 6		
$\therefore \frac{1}{3}(x + $	$(-2) \times 3 = 6 \times 3$ x + 2 = 18	{multiplying both sides by 3}	
$\therefore x$	+2-2=18-2	{subtracting 2 from both sides}	
	$\therefore x = 16$	<i>Check</i> : $\frac{1}{3}(16+2) = \frac{1}{3} \times 18 = 6$ \checkmark	

EXERCISE 2H

1	Solve for x:			
	a $x + 5 = 3$	b $4x = 28$	-18 = -3x	d $7 - x = 11$
	2x + 3 = 14	f $3x - 4 = -13$	9 $5-2x=-9$	h $7 = 11 - 3x$
2	Solve for <i>x</i> :			
	a $\frac{x}{3} = 15$	b $\frac{1}{4}x = 16$	c $1 = \frac{x}{-3}$	d $\frac{x}{-5} = -7$

3 Solve for x:

a
$$\frac{x}{3} - 7 = 10$$

b $\frac{x-4}{3} = -1$
c $\frac{1}{2}(x+5) = 6$
d $\frac{2x-3}{5} = 4$
e $\frac{1}{3}(2-x) = -5$
f $\frac{2-3x}{5} = -8$

- 4 Solve for x:
 - **a** 3(x+2) + 2(x+4) = 19
 - **c** 3(x-3) 4(x-5) = 2
 - 2(3x-2) + 7(2x+1) = 13

b 2(x-7) - 5(x+1) = -7

- **d** 5(2x+1) 3(x-1) = -6
- f 4(x+4) + 3(5-2x) = 19

- **6** Solve for x:
 - **a** 6-x+3(1-x)=7-2x
 - 6 + 7x 2(3 x) = 5x 8

b
$$8-5(3-x) = 9+x$$

d $5(3x+1) - 4x = x - 2$

- 7 Explain why the equation 5(2x-1) + 2 = 10x 3 is true for all values of x.
- 8 Show that the equation 2(9x-1) = 6(3x+1) has no solutions.

LINEAR INEQUALITIES

Linear inequalities take the same form as linear equations, except they contain an inequality sign >, <, \geq , or \leq instead of an equality sign =.

 $3x \leq 27$ and 1-4x > 8 are examples of linear inequalities.

When solving **linear inequalities**, we perform the same operations as when we solve linear equations except:

- Interchanging the sides reverses the inequality sign.
- Multiplying or dividing both sides by a negative reverses the inequality sign.
- We do not multiply or divide both sides by an expression involving the unknown. This is because we do not know its sign.

EXERCISE 21

1	Solve for x :		
	a $x-6>3$	b $3x \leqslant 21$	$4 + x \ge 2$
	d $\frac{x}{4} < -1$	$2x + 1 \le 19$	f $7 - x > 16$
	g $3x - 4 \ge 11$	h $\frac{x}{3} + 5 < 4$	i $7 - \frac{x}{2} > 4$
2	Solve for <i>x</i> :		
	a $\frac{x+3}{2} \leqslant 5$	b $\frac{9-x}{5} < 3$	$\frac{2x-4}{3} \ge -1$
3	Solve for <i>x</i> :		
	a $3+2x > 1-x$	b $6x + 13 \leq 3x + 1$	c $\frac{x}{2} - 4 > x + 7$
	d $5(x-1)+2 \ge 6$	• $4(x-3) < 3(x+5)$	f $6(5-x) \leqslant x - 3(x-2)$

RATIONAL EQUATIONS

A rational equation is an equation in which the unknown appears in the denominator of a fraction.

Many simple rational equations can be converted into linear equations by writing all fractions with the lowest common denominator, and then equating numerators.

Example 22	Self Tutor
Solve for x : $\frac{7}{x+1} = \frac{3}{x}$	
$\frac{7}{x+1} = \frac{3}{x}$	{LCD of fractions = $x(x+1)$ }
$\therefore \left(\frac{7}{x+1}\right) \times \frac{x}{x} = \frac{3}{x} \times \left(\frac{x+1}{x+1}\right)$	{to create the common denominator}
$\therefore \frac{7x}{x(x+1)} = \frac{3(x+1)}{x(x+1)}$	
$\therefore \ 7x = 3(x+1)$	{equating numerators}
$\therefore 7x = 3x + 3$	{expanding the brackets}
$\therefore 4x = 3$	{subtracting $3x$ from both sides}
$\therefore x = \frac{3}{4}$	{dividing both sides by 4}

EXERCISE 2J

1 Solve for x:

Κ

a $\frac{3}{x} = \frac{2}{5}$ **b** $\frac{2}{x} = \frac{1}{3}$ **c** $\frac{7}{x} = \frac{3}{4}$ **d** $\frac{5}{2x} = \frac{4}{3}$ **e** $\frac{4}{x+1} = \frac{5}{3}$ **f** $\frac{3}{1-x} = \frac{2}{5}$

2 Explain why
$$\frac{4}{3x} = \frac{5}{4x}$$
 has no solutions.

3 Solve for x: a $\frac{1}{x} = \frac{2}{x+1}$ b $\frac{x}{x+4} = \frac{1}{2}$ c $\frac{5}{x} = \frac{8}{x-2}$ d $\frac{x}{2x-1} = -\frac{1}{3}$ e $\frac{2}{5} = \frac{x-3}{3x}$ f $\frac{4}{x+3} = \frac{7}{2x}$

POWER EQUATIONS

A power equation is an equation of the form $x^n = k$ where $n \neq 0$.

In this Section we consider the cases n = 2 and n = 3.

If
$$x^2 = k$$
 then
$$\begin{cases} x = \pm \sqrt{k} & \text{if } k > 0\\ x = 0 & \text{if } k = 0\\ x \text{ has no real solutions if } k < 0. \end{cases}$$

If $x^3 = k$ then $x = \sqrt[3]{k}$.

Example 23		() Self Tutor
Solve for x : a $x^2 = 4$	b $x^2 = -5$	c $x^3 = 45$
a $x^2 = 4$ $\therefore x = \pm \sqrt{4}$ $\therefore x = \pm 2$	b $x^2 = -5$ has no real solutions.	$x^{3} = 45$ $\therefore x = \sqrt[3]{45}$ $\therefore x \approx 3.56$

EXERCISE 2K

1 Solve for x:

2

a $x^2=9$	b $x^2 = 49$	$x^2 = 36$	d $x^2 = 0$
$x^2 = 1$	f $x^2 = 17$	g $x^2 = 23$	h $x^2 = 100$
$x^2 = -4$	$x^2 = -7$	$x^2 = 27$	$x^2 = -27$
Solve for <i>x</i> :			
a $x^3=8$	b $x^3=27$	$x^3 = 0$	d $x^3 = 64$
$x^3 = -1$	f $x^3 = -125$	9 $x^3 = \frac{1}{8}$	h $x^3 = 36$

Self Tutor
b $x^3 + 27 = 0$
{subtracting 4 from both sides}
{subtracting 27 from both sides}

3 Solve for x:

	a $x^2+5=9$	b $x^2 + 16 = 25$	$x^2 + 2 = 27$
	d $x^2 + 7 = 23$	$ 8 + x^2 = 44 $	f $x^2 + 14 = 39$
	g $10 + x^2 = 60$	h $x^2 + 5 = 49$	$6 + x^2 = 18$
4	Solve for <i>x</i> :		
	a $x^3 - 1 = 0$	b $x^3 + 8 = 0$	$x^3 - 216 = 0$
	d $x^3 - 1000000 = 0$	$x^3 - 16 = 0$	f $x^3 + 800 = 0$

FORMULAE

Self Tutor

A **formula** is an equation which connects two or more variables. The plural of formula is **formulae** or **formulas**.

It is usual to write a formula so that one of the variables is on its own on one side of the equation, and the other variable(s) are contained in an expression on the other side.

The variable on its own is called the **subject** of the formula.

If the formula contains two or more variables and we know the value of all but one of them, we can solve an equation to find the remaining variable.

Step 1: Write down the formula and state the values of the known variables.

Step 2: Substitute the known values into the formula to form a one variable equation.

Step 3: Solve the equation for the unknown variable.

Example 25

The acceleration of a falling raindrop is given by $a = g - 1.96v \text{ m s}^{-2}$, where $g = 9.8 \text{ m s}^{-2}$ is the gravitational constant, and v is the speed of the raindrop in m s⁻¹. Find:

- a the acceleration of the raindrop before it starts falling
- **b** the acceleration of the raindrop when its speed reaches 3 m s^{-1}
- the speed of the raindrop for which it does not accelerate.

a
$$a = g - 1.96v$$
 where $g = 9.8$
and $v = 0$
 $\therefore a = 9.8 - 1.96 \times 0$
 $\therefore a = 9.8 \text{ m s}^{-2}$
($a = g - 1.96v$ where $a = 0$ and $g = 9.8$
 $\therefore 0 = 9.8 - 1.96v$
 $\therefore a = 3.92 \text{ m s}^{-2}$
($a = 3.92 \text{ m s}^{-2}$
 $\therefore 0 = 9.8 - 1.96v$
 $\therefore 1.96v = 9.8$
 $\therefore v = \frac{9.8}{1.96} = 5 \text{ m s}^{-1}$

EXERCISE 2L

- 1 For the formula P = 2m + 3n, find the value of P when:
 - a m=4 and n=5

b m = 6 and n = -1

m=-3 and n=2

d m = -2.5 and n = -7.

2 The circumference C of a circle with diameter d is given by the formula $C = \pi d$ where $\pi \approx 3.14159$ is a constant. Find the circumference of a circle with diameter:

a 8 cm **b** 11 m **c** 15.7 cm.

3

A tennis ball is dropped from the top of a tall building. The total distance it has fallen is given by the formula $D = \frac{1}{2}gt^2$ where D is the distance in metres and t is the time taken in seconds. $g = 9.8 \text{ m s}^{-2}$ is the gravitational constant.

- **a** Find the total distance fallen in the first 3 seconds.
- Find the height of the building, to the nearest metre, if the ball takes 5.13 seconds to reach the ground.
- 4 The formula $D = 3.56\sqrt{h}$ estimates the distance in kilometres to the horizon which is seen by a person with eye level h metres above the level of the sea.

Find the distance to the horizon when a person's eye level is:

- **a** 2 m above sea level
- **b** 10 m above sea level
- **c** 20 m above sea level.

- 5 When a car travels d kilometres in time t hours, the average speed for the journey is given by $s = \frac{d}{t} \operatorname{km} h^{-1}$. Find:
 - **a** the average speed of a car which travels 200 km in $2\frac{1}{2}$ hours
 - **b** the distance travelled by a car in $3\frac{1}{4}$ hours if its average speed is 80 km h⁻¹
 - the time taken, to the nearest minute, to travel 865 km at an average speed of 110 km h^{-1} .
- **6** The potential difference V across an R ohm resistor is given by V = IR volts, where I is the current in amps flowing through the circuit. Find:
 - a the potential difference across a 6 ohm resistor if the current in the circuit is 0.08 amps
 - **b** the resistance in a circuit with current 0.2 amps if the potential difference is 12 volts.
- 7 The volume of a cylinder of radius r and height h is given by $V = \pi r^2 h$. Find:
 - a the volume of a cylindrical tin can of radius 12 cm and height 17.5 cm
 - **b** the height of a cylinder of radius 4 cm if its volume is 80 cm^3
 - the radius, in mm, of copper wire with volume 100 cm³ and length 90 cm.

FORMULA REARRANGEMENT

Consider the formula $V = \frac{1}{3}\pi r^2 h$, which gives the volume of a cone with radius r and height h.

We say that V is the **subject** of the formula because V is expressed in terms of the other variables r and h.

The formula can be **rearranged** to make an **equivalent** formula in which one of the other variables is the subject.

For example, the height of the cone is given by $h = \frac{3V}{\pi r^2}$.

We rearrange formulae using the same methods which we used to solve equations. We perform **inverse operations** to isolate the variable we wish to make the subject.

Example 26	Self Tutor
Make y the subject of	3x - 7y = 22.
3x - 7y = 22	
$\therefore -7y = 22 - 3x$	{subtracting $3x$ from both sides}
$\therefore 7y = 3x - 22$	{multiplying both sides by -1 }
$\therefore y = \frac{3x - 22}{7}$	{dividing both sides by 7}

EXERCISE 2M

1	Make y the subject of:		
	a $x+2y=4$	b $2x + 6y = 7$	3x + 4y = 11
	d 5x + 4y = 8	2 7x + 2y = 20	f $11x + 15y = 38$
2	Make y the subject of:		
	a $x-2y=4$	b $2x - 6y = 7$	3x - 4y = -12
	d $4x - 5y = 18$	e 7x - 6y = 42	f $12x - 13y = -44$
3	Make x the subject of:		
	a $a+x=b$	b $ax = b$	c 2x+a=d
	c + x = t	$\bullet 7x + 3y = d$	f $ax + by = c$
	g mx - y = c	c - 2x = p	a-3x=t
	n-kx=5	$\mathbf{k} a - bx = n$	p = a - nx

Example 27	Self Tutor
Make z the subject of $y = \frac{x}{z}$.	
$y = \frac{x}{z}$ $\therefore yz = x \{\text{multiplying both sides by } z\}$ $\therefore z = \frac{x}{y} \{\text{dividing both sides by } y\}$	

4 Make x the subject of:

a	$a = \frac{x}{b}$	b	$\frac{a}{x} = d$	C	$p = \frac{2}{x}$
d	$\frac{x}{2} = n$	e	$\frac{5}{x} = \frac{y}{z}$	f	$\frac{m}{x} = \frac{x}{n}$

5 The equation of a straight line is 5x + 3y = 18. Rearrange this formula into the form y = mx + c, and hence state the gradient m and the y-intercept c.

Example 28

The circumference of a circle is given by $C = 2\pi r$, where r is the circle's radius.

- a Rearrange this formula to make r the subject.
- Hence find the radius when the circumference is:
 10 cm
 20 cm
- a $2\pi r = C$
 - $\therefore r = \frac{C}{2\pi} \quad \{\text{dividing both sides by } 2\pi\}$
- **b i** When C = 10, $r = \frac{10}{2\pi} \approx 1.59$
 - \therefore the radius is about 1.59 cm.
 - iii When C = 50, $r = \frac{50}{2\pi} \approx 7.96$
 - \therefore the radius is about 7.96 cm.
- ii When C = 20, $r = \frac{20}{2\pi} \approx 3.18$ \therefore the radius is about 3.18 cm.

50 cm.

Self Tutor

- 6 a Make s the subject of the formula R = 5s + 2t.
 b Find the value of s when:
 i R = 16 and t = 3
 ii R = 2 and t = 11
 iii R = 8 and t = -2.
 - 1 10 and t = 0 1 1t = 2 and t = 11 11 1t = 1
- 7 a Make x the subject of the formula $M = \frac{t}{2\pi a}$.
 - **b** Find the value of x when:
 - M = 5, t = 4, y = 6 M = 20, t = 5, y = 0.1
- 8 The area of a circle of radius r is given by A = πr².
 a Make r the subject of the formula.
 b Find the radius of a circle with area:
 - $i 4 \text{ cm}^2$ $ii 12.5 \text{ cm}^2$ $iii 25 \text{ cm}^2$.
- 9 When a car travels d kilometres in time t hours, the average speed s for the journey is given by the formula $s = \frac{d}{t} \operatorname{km} \operatorname{h}^{-1}$.
 - **a** Make d the subject of the formula. Hence find the distance travelled by a car if:
 - i the average speed is 60 km h^{-1} and the time travelled is 3 hours
 - ii the average speed is $80 \text{ km} \text{ h}^{-1}$ and the time travelled is $1\frac{1}{2}$ hours
 - iii the average speed is $95 \text{ km} \text{ h}^{-1}$ and the time travelled is 1 h 20 min.
 - **b** Make t the subject of the formula. Hence find the time required for a car to travel:
 - i 180 km at an average speed of 60 km h^{-1}
 - ii 140 km at an average speed of 35 km h^{-1}
 - iii 220 km at an average speed of 100 km h⁻¹.

Background Knowledge

Measurement

Contents:

A International system (SI) units

- B Perimeter
- C Area
- D Speed

INTERNATIONAL SYSTEM (SI) UNITS

HISTORICAL NOTE

The decimal Metric system of measurement was created at the time of the French Revolution.

Having decided that a new unit of length, the metre, should be one ten millionth of the distance from the North Pole to the Equator, Pierre Méchain (1744 - 1804) and Jean-Baptiste Delambre (1749 - 1822) set about surveying the 1000 km section of the meridian arc from Dunkirk to Barcelona. At the end of their survey, a platinum bar was deposited in the Archives de la République in Paris in 1799, defining the standard metre.

Jean-Baptiste Delambre

Despite errors in the calculations of Méchain and Jean-Baptiste, when it was decided in 1867 to create a new international standard metre, the length was taken to be that of the platinum bar still in Paris.

The International System of Units, abbreviated SI from the French le Système International d'Unités, is the world's most widely used system of measurement.

It is founded on seven base units:

Quantity	Name	Symbol
Distance	metre	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Temperature	kelvin	K
Intensity of light	candela	cd
Amount of substance	mole	mol

Other SI units, called derived units, are defined in terms of the base units by multiplying or dividing them. The result is often given its own special name.

Some of the common SI derived units are:

Quantity	Name	Symbol
Area	square metre	m^2
Volume	cubic metre	m ³
Mass	gram	g
Velocity	metres per second	${ m ms^{-1}}$
Angle	radian	rad

Quantity	Name	Symbol
Force	newton	Ν
Pressure	pascal	Pa
Energy	joule	J
Power	watt	W
Frequency	hertz	Hz

When we multiply one unit by another, we leave a short space between the unit symbols.

For example, torque or a moment of force is measured in newton metres, written Nm.

When we divide one unit by another, we use an oblique line between the unit symbols, or a negative exponent.

- For example: speed in metres per second is written m/s or $m s^{-1}$
 - the *density* of an object is its mass per unit volume, measured in kg/m^3 or $kg m^{-3}$.

In addition to the base and derived units, the SI allows the use of other units, such as:

Quantity	Name	Symbol	SI equivalent
Time	minute	min	60 s
	hour	h	3600 s
Mass	tonne	t	1000 kg
Capacity	litre	L	0.001 m^3
Area	hectare	ha	10000 m^2
Angle	degree	0	$\frac{\pi}{180}$ rad
Temperature	degree Celsius	°C	K - 273.15
Pressure	millibar	mb	100 Pa
Distance at sea	nautical mile	Nm	1.852 km
Speed at sea	knot	kn	$1.852 \text{ km} \text{h}^{-1}$
Energy	kilowatt hour	kWh	3.6 MJ

Smaller or larger multiples of SI units are obtained by combining the base unit with a prefix chosen according to powers of 10. The most commonly used are:

nano	n	$10^{-9} = \frac{1}{1000000000}$	kilo	k	$10^3 = 1000$
micro	μ	$10^{-6} = \frac{1}{1000000}$	mega	Μ	$10^6 = 1000000$
milli	m	$10^{-3} = \frac{1}{1000}$	giga	G	$10^9 = 1000000000$

The SI also accepts the prefix "centi" (10^{-2}) which can be used in conjunction with metre, litre, or gram.

When stating the value of a measurement, the prefix chosen should give the value as a number between 0.1 and 1000. Thus, one nautical mile is written as 1.852 km, not 1852 m.

For more information on SI units, visit www.bipm.org/en/publications/si-brochure/

UNITS OF LENGTH

The most common units of length are:

- millimetres (mm)
- centimetres (cm)
- metres (m)
- kilometres (km)

UNITS OF AREA

The most common units of area are the squares of the length units:

- square millimetres (mm²)
- square metres (m²)

- square centimetres (cm²)
- square kilometres (km²).

For larger areas we can also use hectares (ha).

UNITS OF VOLUME

The most common units of volume are the cubes of the length units:

- cubic millimetres (mm³)
- cubic centimetres (cm³)
- cubic metres (m³)

UNITS OF CAPACITY

The most common units of capacity are:

- millilitres (mL)
- litres (L)
- kilolitres (kL)

 $\times 1000$

 $\times 1000$

t

kg

UNITS OF MASS

The most common units of mass are:

- milligrams (mg)
- grams (g)
- kilograms (kg)
- tonnes (t)

UNITS OF TIME

The most common units of time are related as follows:

1 minute = 60 seconds 1 hour = 60 minutes = 3600 seconds 1 day = 24 hours 1 week = 7 days 1 year = 12 months = $365\frac{1}{4}$ days

g

 $\times 1000$

mg

Example 4	Self Tutor
Convert: a 2 hours 18 minutes 26 seconds to seconds	b 7200 seconds to minutes
a 2 h 18 min 26 s = (2×3600) s + (18×60) s + 26 s = 8306 s	b 7200 s = $(7200 \div 60)$ min = 120 min

EXERCISE 3A

- 1 Convert:
 - **a** 8250 cm to m
 - **d** 73.8 mm to cm
- 2 Convert:
 - **a** 413 cm to mm
 - d 26.9 m to mm

- **b** 295 mm to cm
- **e** 24.63 cm to m
- **b** 3754 km to m
- \mathbf{e} 0.47 km to cm

- 6250 m to km
- f 9.761 m to km
- 4.829 km to cm
- f 3.88 km to mm

44 BACKGROUND KNOWLEDGE: MEASUREMENT (Chapter 3)

- 3 A hardware store stocks 85 reels of garden hose, each containing 30 m of hose. How many kilometres of garden hose are stocked by the store?
- 4 Phyllis is a candlemaker. The wick of each of her candles is 27.5 cm long. If Phyllis has 770 m of wick, how many candles can she make?

5 In 18th century Europe, the unit of length *ell* had multiple meanings. For example, the Polish ell was approximately 78.7 cm, and the French ell was approximately 137.2 cm.A polish tailor asked his apprentice, who was travelling to France, to purchase 18 ells of silk. Unfortunately, the apprentice purchased the silk in French ells instead of Polish ells. How much

extra silk was purchased? Give your answer to the nearest Polish ell.

- 6 Convert:
- a 560 cm² to m²
 b 55 mm² to cm²
 c 8.43 m² to km²
 d 3820 m² to ha
 e 7.21 ha to km²
 f 9890 000 mm² to m²

 7 Convert:

 a 2.1 cm² to mm²
 b 0.38 m² to cm²
 c 4.8 km² to ha
 d 0.0059 ha to m²
 e 83.25 ha to m²
 f 0.13 km² to m²
- 8 In my city there are around 56 800 houses built on 4800 hectares of land. Find, in square metres, the average lot size for a house.
- A glazing company manufactures glass in 9.9 m² sheets. It then cuts the sheets into 550 cm² panels.
 How many panels can be cut from each sheet?
- **10** Convert:

a	39100000 cm 3 to m 3	Ь	0.51 cm^3 to mm^3	C	469000 cm^3 to m^3
d	3.82 m^3 to cm^3	e	5.27 mm^3 to cm^3	f	0.0179 m^3 to cm^3
9	692000 mm^3 to cm^3	h	$183460000~\mathrm{mm^3}$ to $\mathrm{m^3}$	i	$0.0051 \text{ m}^3 \text{ to } \text{cm}^3$

- 11 A steel ball bearing has volume 0.27 cm³. If the manufacturer has 1.35 m³ of steel, how many ball bearings can be made?
- 12 There is about 5.5 cm³ of aluminium in a soft drink can. A recycling depot collects 46 291 cans and melts them down, losing 15% of the metal in the process. How many cubic metres of aluminium do they now have?
- **13** Convert:

a	4.21 L to mL	Ь	8.63 kL to L	C	4600 mL to L
d	56900 L to kL	e	3970 mL to kL	f	0.012 kL to mL

14 A petrol station begins the week with 143 kL of petrol in its storage tanks. During the week, 2856 people fill up their car tanks, using an average of 35.8 L each. How much petrol is left at the station?

- **15** A citrus oil producer sells oil in 200 mL bottles. How many bottles can be filled from a 372 L batch of citrus oil?
- **16** Convert:
 - **a** 5.9 kg to g **b** 2600 g to kg
 - d 15 kg to mg e
 - **g** 1.7385 g to mg **h** 46 218 g to t
- 17 How many 6 gram nails can be made from 0.12 t of iron?
- 18 Dominic found that the average mass of a banana on his plantation was 138 grams. That year he exported $45\,000$ bananas.
 - a How many tonnes of bananas did Dominic export?
 - **b** If each truck carried 1700 kg of bananas to the port, how many truck loads were required that year?
- 19 In jewellery, the terms *carat* and *karat* are often confused. A *carat* is a unit of weight equal to 200 mg. A *karat* is a unit for the purity of gold, equivalent to $\frac{1}{24}$ of the whole.
 - **a** Find the weight in grams of a 16 carat diamond.
 - A jeweller melts 21 g of 8 karat gold with 27 g of 24 karat gold. How many karat is the resulting blend?

- **c** 1 hour 20 minutes
- f 5 h 16 min 25 s

c 5 h 23 min

21 Convert to minutes:

20 Convert to seconds:

a 15 minutes
d 3 min 47 s

a $4\frac{1}{2}$ hours

Example 5

b 2040 s

b 42 minutes

3 h 6 min 18 s

Self Tutor

Calculate in hours and minutes: a 3 h 42 min + 1 h 37 minb 4 h 25 min - 2 h 34 min a 3 h 42 min + 1 h 37 min + 1 h 37 min 4 h 79 minSince 60 min = 1 h, the total is 5 h 19 min. b 3 85 4 h 25 min - 2 h 34 min 1 h 51 min

22 Calculate in hours and minutes:

- **a** 1 h 14 min + 2 h 17 min
- **c** 9 h 5 h 55 min

- **b** 3 h 41 min + 2 h 24 min
- **d** 7 h 23 min 4 h 48 min

- 2000 g to kg
- **c** 3750 g to t
- f 1600 mg to kg
- 0.0361 kg to mg

PERIMETER

The **perimeter** of a figure is the distance around its boundary. For a **polygon**, the perimeter is obtained by adding the lengths of all of its sides. For a **circle**, the perimeter has the special name **circumference**.

The following are perimeter formulae for commonly occurring shapes:

EXERCISE 3B

1 Find the perimeter of the following figures:

- 2 A rectangular field 220 metres long and 300 metres wide is surrounded by a post and rail fence.
 - **a** Draw and label a diagram of the field.
 - **b** Find the total length of the fence.

- A farmer needs to fence his vegetable garden to keep 3 out his sheep. The garden measures $26 \text{ m} \times 40 \text{ m}$. The fence has 5 strands of wire, and posts are placed every 2 metres. A gate occupies one of the 2 m gaps.
 - a Calculate the perimeter of the garden.
 - Ь What length of wire is needed?
 - How many posts are needed?
 - **d** Wire costs 0.34 per metre, each post costs \$11.95, and the gate costs \$88. Find the total cost of the fence.
- A room has the shape and dimensions shown. Skirting board must be laid around the edge of the room. It is sold in 2.4 metre lengths which can be cut as needed. Each length costs \$2.48.
 - **a** What length of skirting board is needed?
 - Find the cost of the skirting board. Ь
- Find, to 4 significant figures, the perimeter of: 5

6

- My bike wheels have radius 32 centimetres. When I ride to school, the wheels complete 7 639 revolutions. Calculate how far I live from my school, to the nearest metre.
- A netball court has the dimensions shown. 8
 - a Find the perimeter of the court.
 - **b** Find the total length of all the marked lines.

- **9** Find:
 - a the diameter of a circular pond with circumference 37.38 m
 - **b** the radius of a circular gazebo with circumference 32.67 m.
- 10 A conveyor belt 50 m long is used to carry objects a distance of 23 m. What depth is the recess needed to exactly contain the belt rollers?

The area of a closed figure is the number of square units it contains.

The following are area formulae for commonly occurring shapes:

EXERCISE 3C

(3x + 4) m

(2x + 1) cm

4 Calculate the area of each shape:

C

5 Calculate the area of the following shaded regions:

52 BACKGROUND KNOWLEDGE: MEASUREMENT (Chapter 3)

6 Write a formula for the area A of each shaded region:

- 8 Pete's Pizza Bar sells three sizes of circular pizza. The small pizza has diameter 15 cm and costs \$8.40. The medium size has diameter 30 cm and costs \$19.20. The super size has diameter 35 cm and costs \$28. Which of the pizzas gives the best value for money?
- **9** Gavin is landscaping his backyard. He wants to have a section of lawn with the dimensions shown below, with bricks around its border.

brick border

The bricks are 22 cm long, and cost \$4.70 each. The lawn costs \$15 per square metre.

- **a** Find the length of the border.
- Find the area of the lawn.

7

- **b** How many bricks will Gavin need?
- **d** Find the total cost of the project.
- **10** Concrete slabs suitable for a driveway are sold in two sizes:
 - Size A: 0.6 m by 0.6 m Size B: 0.6 m by 0.3 m.

Both types of slab cost \$18.25 per square metre.

A driveway is to be 2.4 m wide and 18 m long. The slabs are laid on sand which costs \$18 per tonne. A tonne of sand covers 17.5 m^2 to the required depth. The sand must be purchased in a multiple of 0.2 of a tonne.

- a Calculate the area of the driveway.
- **b** Explain why you need 4 size B slabs for the pattern given in the diagram.
- How many size A slabs are needed?
- d How much sand must be purchased?
- Find the total cost of the slabs and sand.

D

SPEED

Self Tutor

The most common rate that we use is **speed**, which is a comparison between the *distance travelled* and the *time taken*.

The instantaneous speed of an object refers to how fast the object is travelling at a given point in time.

For example, when you are in a car, the speedometer might say that you are travelling at 50 km per hour.

However, when we go on a journey, we do not always travel at a constant speed. We need to slow down for other cars, and stop at traffic lights. For the whole journey, therefore, we calculate an **average speed** by comparing the total distance travelled with the total time taken.

average speed =	total distance travelled
	total time taken

40 5 60 70 30 0 0 2 4 7 2 90 20 100 10 0 6 4 5 110 120 KMPH

D $S \times T$

You can use the triangle alongside to help you remember these.

Example 11

This formula can be rearranged as:

A tour bus travels 238 km in 2 h 48 min.

a Find the average speed of the bus.

b Travelling with the same speed, how long would the bus take to complete a 761 km trip?

distance = speed \times time

or time = $\frac{\text{distance}}{\text{speed}}$

EXERCISE 3D

- 1 Find, in $km h^{-1}$, the average speed of:
 - a a plane which flies 3200 km in 3 h 24 min
 - **b** a cyclist who rides 143 km in 5 h 17 min.
- 2 Find, in $m s^{-1}$, the average speed of:
 - a a runner who sprints 200 m in 24.38 s
 - **b** an arrow which flies 58 m in 0.87 s.

- **3** Find the time taken for:
 - **a** a train to travel 184 km with average speed 128 km h^{-1}
 - **b** a car to travel 33.2 km with average speed 47.5 km h^{-1}
 - c a drone to fly 850 m with average speed 14.3 m s^{-1}
 - **d** a lifesaver to swim 230 m with average speed 0.82 m s^{-1} .

4 Find the distance that:

- **a** a plane flying at 360 km h^{-1} will travel in 2 h 20 min
- **b** a cyclist riding at $22.4 \text{ km} \text{ h}^{-1}$ will travel in 46 min
- c a mosquito flying at 0.58 m s^{-1} will travel in 35 s
- **d** a family walking at 1.6 m s⁻¹ will travel in 15 min.
- **5** A Caribbean yacht race takes place on a 148 nautical mile course. The winner finishes in 5 h 36 min 2 s.
 - **a** Write the length of the race in km.
 - **b** Write the winning time as a decimal number of hours.
 - Find the average speed of the winning yacht.

Background Knowledge

Pythagoras' theorem

Contents:

- A Pythagoras' theorem
- B The converse of Pythagoras' theorem
- C Right angles in geometric figures

Problem solving

PYTHAGORAS' THEOREM

A right angled triangle is a triangle which has a right angle in one corner.

The side opposite the right angle is called the **hypotenuse**, and is the longest side of the triangle. The other two sides are called the **legs** of the triangle.

Pythagoras' theorem is:

In a right angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

 $c^2 = a^2 + b^2$

If we know the lengths of any two sides of a right angled triangle, we can use Pythagoras' theorem to find the third side.

EXERCISE 4A

1 Find the length of the hypotenuse in the following right angled triangles.

2 Find the length of the third side in the following right angled triangles.

7 In the following figures, draw additional lines to complete right angled triangles. Apply Pythagoras' theorem to find the unknown distance AB.

B THE CONVERSE OF PYTHAGORAS' THEOREM

If we know all the side lengths of a triangle, we can determine whether the triangle is right angled by using the **converse of Pythagoras' theorem:**

EXERCISE 4B

1 The following triangles are not drawn to scale, but the information on them is correct. Which of the triangles is right angled?

2 The following triangles are not drawn to scale, but the information on them is correct. If any of them is right angled, find the vertex where the right angle occurs.

С

RIGHT ANGLES IN GEOMETRIC FIGURES

There are many geometric figures which involve right angles. It is important to recognise these because it tells us when we can apply Pythagoras' theorem.

In a **rectangle**, right angles exist between adjacent sides. We can construct a diagonal to form a right angled triangle.

EXERCISE 4C

1 Find the lengths of the diagonals of these rectangles:

- **2** Find the lengths of the diagonals of a $12 \text{ mm} \times 16 \text{ mm}$ rectangle.
- **3** The shorter side of a rectangle is 5 mm, and its diagonal is 11 mm. Find:
 - a the length of the longer side b the area of the rectangle.
- 4 The longer side of a rectangle is three times the length of the shorter side. The diagonal has length $\sqrt{1000}$ m. Find the exact dimensions of the rectangle.
- **5** A rhombus has diagonals of length 2 cm and 4 cm. Find the length of its sides in surd form.
- Find the side length of a square with diagonals 18 cm long.
- 7 Find the value of x:

- 8 A rhombus has sides of length 8 m. Its shorter diagonal is 10 m long. Find:
 - a the length of the longer diagonalb the area of the rhombus.
- **9** An isosceles triangle has equal sides of length 6 cm. Its third side is 8 cm long. Find:
 - a the altitude of the triangle **b** the area of the triangle.
- 10 The base of an isosceles triangle is 6 cm long, and its area is 12 cm^2 . Find the length of the two equal sides.
- 11 The altitude of an equilateral triangle is $2\sqrt{3}$ mm in length. Find the perimeter of the triangle.
- **12** Consider the circle alongside with diameter PQ.
 - a What is the measure of PRQ?
 - **b** Write down an equation relating a, b, and c.

14 The chord of a circle is 8 cm long. The closest point of the chord to the centre of the circle is 3 cm away from it. Find the radius of the circle.

15 Find the radius of this semi-circle.

16 Triangle ABC is drawn using three points on a circle. Determine whether BC is a diameter of the circle.

D

PROBLEM SOLVING

Right angled triangles occur frequently in **problem solving**. Any time a right angle is present you should check whether Pythagoras' theorem can be used and whether it is beneficial.

EXERCISE 4D

1 Find the value of x, correct to 3 significant figures:

2 How high is the roof above the walls in the following roof structures?

3 A sailing crew races 4 laps around the course shown. What distance do they travel in total?

- 4 A schooner sails to a point 46 km north and 74 km east of its port. How far is the ship from its port?
- **5** A runner is 2.2 km east and 1.5 km south of her starting point.
 - **a** How far is she from her starting point?
 - If she can run at 10 km h⁻¹, how long will it take her to return to her starting point in a direct line?
- 6 Rohan is building a rabbit hutch in the shape of an equilateral triangular prism. Its height is 80 cm.
 - **a** How long are the sides of the triangle?
 - **b** Find the area of ground covered by the rabbit hutch.

Captain Jack and Captain Will leave Bridgetown at the same time. Jack sails due east at a constant speed of 15 km h^{-1} , and Will sails due south at a constant speed of 19 km h^{-1} .

- a How far has each captain travelled after two hours?
- **b** Find the distance between the captains 2 hours after leaving Bridgetown.

66 BACKGROUND KNOWLEDGE: PYTHAGORAS' THEOREM (Chapter 4)

8 A projector is 4 m from the middle of a screen 1.5 m high. How much further away from the projector is the top edge than the centre of the screen?

- Julia walks to school across the diagonal of a rectangular field. The diagonal is 85 metres long. One side of the field is 42 m.
 - **a** Find the length of the other side of the field.
 - **b** By how much is it shorter to walk across the diagonal, than around two sides?
- 10 A power station P supplies two towns A and B with electricity. New underground power lines to each town are required. The towns are connected by a straight highway through A and B, and the power station is 42 km from this highway.
 - a Find the length of power line required from P to each town.
 - Find the total cost of the new power line given that each kilometre will cost \$23500.
- The diagram shows various measurements of a field.
 Calculate the perimeter of the field, to the nearest metre.

Example 9

Michael's coffee mug is 90 mm high and 73 mm in diameter. It is filled to the brim with steaming hot coffee. Michael does not like sugar, but he always stirs in his milk. What is the minimum length stirrer Michael needs so that if he drops it in, it will not disappear in the coffee?

Let the stirrer have length l mm.

If the stirrer fits exactly in the mug, we have a right angled triangle.

By Pythagoras, $l^2 = 73^2 + 90^2$ $\therefore l = \sqrt{(73^2 + 90^2)}$ {as l > 0} $\therefore l \approx 115.9 \text{ mm}$

So, the stirrer must be at least 116 mm long.

12 An ice cream cone is 8 cm tall and its slant height is 10 cm.Find the radius of the circle at the top of the cone.

13 -15 m 14 m stage An actor stands at the back of the stage of Shakespeare's Globe theatre, which is cylindrical.

How far must his voice reach so that he can be heard by the audience member furthest away from him?

14 A cylindrical soft drink can is 8 cm wide and 12 cm high, with a hole in the middle of the top for the straw. How long must the straw be so that all of the soft drink can be reached, and there is 2 cm of straw sticking out at the top?

Self Tutor

Example 10

The floor of a room is 6 m by 4 m and has height 3 m. Find the distance from a corner point on the floor to the opposite corner point on the ceiling.

We label corners of the room as shown.

The required distance is AD.

In
$$\triangle BCD$$
, $x^2 = 4^2 + 6^2$ {Pythagoras}
 $\therefore x^2 = 16 + 36 = 52$
In $\triangle ABD$, $y^2 = x^2 + 3^2$
 $\therefore y^2 = 52 + 9 = 61$
 $\therefore y = \sqrt{61} \approx 7.81$

So, the distance from a corner point on the floor to the opposite corner point on the ceiling is about 7.81 m.

15 A cube has sides of length 10 cm.Find the length of a diagonal of the cube.

- 16 A room is 7 m by 4 m and has a height of 3 m. Find the distance from a corner point on the floor to the opposite corner point on the ceiling.
- 17 Skyways Airlines has the policy that passengers cannot carry on luggage with diagonal measurement of more than 56 cm. Katie's bag is $40 \text{ cm} \times 30 \text{ cm} \times 25 \text{ cm}$. Is she allowed to carry it on board the plane?

18 A square-based pyramid tent has a centre pole 1.6 m high, and edge poles 2.1 m long. What is the maximum possible height of a camper who sleeps along the edge of the tent?

19 A pyramid of height 40 m has a square base with edges of length 50 m. Determine the length of its slant edges.

An aeroplane P is flying at an altitude of 10 000 m. Ship A is due south and 22.5 km from P in a direct line. Ship B is due east and 40.8 km from P in a direct line. Find the distance between the two ships.

Background Knowledge

Coordinate geometry

Contents:

- A The distance between two points
- **B** Midpoints
- **C** Gradient
- Parallel and perpendicular lines

THE NUMBER PLANE

The number grid alongside is a **Cartesian plane**, named after **René Descartes**. The numbers or **coordinates** on it allow us to locate the exact position of any point on the plane.

We start with a point of reference O called the **origin**. Through it we draw a horizontal line called the x-axis, and a vertical line called the y-axis.

The x-axis is an ordinary number line with positive numbers to the right of O and negative numbers to the left of O.

The y-axis has positive numbers above O and negative numbers below O.

The axes divide the number plane into four quadrants.

PLOTTING POINTS ON THE CARTESIAN PLANE

To specify the position of a point on the number plane, we use an **ordered pair** of coordinates in the form (x, y).

For example, on the grid alongside we see the point described by the ordered pair of coordinates (3, 2). We say that 3 is the *x*-coordinate and 2 is the *y*-coordinate.

THE DISTANCE BETWEEN TWO POINTS

To go from $A(x_1, y_1)$ to $B(x_2, y_2)$,

the x-step $= x_2 - x_1$

and the y-step $= y_2 - y_1$.

Using Pythagoras' theorem,

$$(AB)^2 = (x \text{-step})^2 + (y \text{-step})^2$$

 $\therefore AB = \sqrt{(x \text{-step})^2 + (y \text{-step})^2}$
 $\therefore d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$

The distance d between two points (x_1, y_1) and (x_2, y_2) is given by

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Example 1			Self Tutor
Find the distance between $A(6, 3)$ and $B(8, -2)$.	$ \begin{array}{c} A(6, 3) \\ \uparrow \\ x_1 y_1 \end{array} $	$ \begin{array}{c} \mathbf{B}(8, -2) \\ \uparrow & \uparrow \\ x_2 & y_2 \end{array} $	$AB = \sqrt{(8-6)^2 + (-2-3)^2}$ = $\sqrt{2^2 + (-5)^2}$ = $\sqrt{4+25}$ = $\sqrt{29}$ units

EXERCISE 5A

- **1** Find the distance from:
 - **a** A(2, 6) to B(3, 3)
 - **c** M(2, 4) to N(-1, -3)
 - e R(3, -2) to S(5, -2)
 - **9** W(-4, 0) to X(0, 3)
- 2 On the map alongside, each grid unit represents 1 km.

Find the distance between:

- a the lighthouse and the tree
- **b** the jetty and the lighthouse
- **c** the well and the tree
- **d** the lighthouse and the well.

- **b** C(-2, 3) to D(1, 5)
- **d** O(0, 0) to P(-2, 4)
- f T(0, 3) to U(2, -1)
- **h** Y(-1, -4) to Z(-3, 3).

Example 2

Self Tutor

- The points A(2, -1), B(5, 1), and C(0, 2) form a triangle ABC.
 - a Use the distance formula to classify the triangle as equilateral, isosceles, or scalene.
 - **b** Determine whether the triangle has a right angle.

a AB =
$$\sqrt{(5-2)^2 + (1-(-1))^2}$$

= $\sqrt{3^2 + 2^2}$
= $\sqrt{13}$ units
AC = $\sqrt{(0-2)^2 + (2-(-1))^2}$
= $\sqrt{(-2)^2 + 3^2}$
= $\sqrt{13}$ units
BC = $\sqrt{(0-5)^2 + (2-1)^2}$
= $\sqrt{(-5)^2 + 1^2}$
= $\sqrt{26}$ units

Since AB = AC but not BC, triangle ABC is isosceles.

b $AB^2 + AC^2 = 13 + 13$ = 26 $= BC^2$

> Using the converse of Pythagoras' theorem, triangle ABC is right angled. The right angle is at A, opposite the longest side.

- 3 Use the distance formula to classify triangle ABC as either equilateral, isosceles, or scalene.
 - **a** A(-1, 0), B(-2, 3), C(-5, 4)**b** A(-2, -4), B(1, 4), C(2, -3)
 - **c** A(0, 1), B(0, -1), C($-\sqrt{3}$, 0) **d** A(0, -4), B($\sqrt{3}$, 1), C($3\sqrt{3}$, -5)
- Determine whether the following triangles are right angled. If there is a right angle, state the vertex where it is located.
 - **a** A(1, -1), B(-1, 2), C(7, 3)
 - A(-2, 3), B(-5, 4), C(1, 2)
- Fully classify the triangle formed by the following points: 5
 - **a** A(-4, 5), B(3, 4), C(8, -1)
 - **b** A(2, -5), B(-2, 2), C(-4, -1)
 - A(-2, 1), B(-3, 4), C(1, 2)
 - **d** A($\sqrt{3}$, -1), B(0, 2), C($-\sqrt{3}$, -1)

- **b** A(-1, 2), B(3, 4), C(5, 0)
- **d** A(5, 4), B(-4, 6), C(-3, 2)

Classify the triangles according to side length and the presence of a right angle.

M

A•

В

The **midpoint** of line segment [AB] is the point midway between points A and B.

Consider the points A(3, 1) and B(5, 5). M is at (4, 3) on the line segment connecting A and B.

Using the distance formula,

AM =
$$\sqrt{(4-3)^2 + (3-1)^2} = \sqrt{5}$$
 units, and
MB = $\sqrt{(5-4)^2 + (5-3)^2} = \sqrt{5}$ units.

So, M is the midpoint of AB.

The x-coordinate of M is the average of the x-coordinates of A and B.

$$x_{\rm M} = \frac{3+5}{2} = 4$$

The y-coordinate of M is the average of the y-coordinates of A and B.

$$y_{\rm M} = \frac{1+5}{2} = 3$$

MIDPOINT

• B
Given $A(x_1, y_1)$ and $B(x_2, y_2)$, the **midpoint** of [AB] has coordinates

$$\left(rac{x_1+x_2}{2}, \; rac{y_1+y_2}{2}
ight)$$

Self Tutor

Self Tutor

Example 3

Given A(-1, 3) and B(5, -2), find the coordinates of the midpoint M of [AB].

The x-coordinate of M = $\frac{-1+5}{2} = \frac{4}{2} = 2$ The y-coordinate of M = $\frac{3+(-2)}{2} = \frac{1}{2}$

 \therefore the midpoint of [AB] is M(2, $\frac{1}{2}$).

EXERCISE 5B

1

Using the diagram only, find the coordiantes of the midpoint of the line segment:

a [ST]	ь	[UV]
c [WX]	d	[YZ]
€ [SV]	f	[UT]
9 [YT]	h	[TV]

b (1, 6) and (4, 2)

d (3, -2) and (3, 2)

f (0, -3) and (-2, 5)

h (1, 0) and (-6, 8).

2 Find the coordinates of the midpoint of the line segment joining:

- **a** (2, 5) and (4, 7)
- (0, 3) and (2, 0)
- \bullet (-1, 4) and (2, 2)
- (-4, -1) and (3, -2)

Example 4

M is the midpoint of [AB], where A is (-1, 4) and M is (2, 3). Find the coordinates of B using:

a the midpoint formula

- **b** equal steps.
- a Let B have coordinates (a, b). $\therefore \frac{a + (-1)}{2} = 2$ and $\frac{b+4}{2} = 3$ $\therefore a - 1 = 4$ and b + 4 = 6 $\therefore a = 5$ and b = 2So, B is the point (5, 2). So, B is the point (5, 2). x - 3 = 5 and b = 2 x - 3 = 5 and b = 2 x - 3 = 5 and b = 2x - 3 = 5 x - 1 = 4 x -

74 BACKGROUND KNOWLEDGE: COORDINATE GEOMETRY (Chapter 5)

- Suppose M is the midpoint of [AB]. For the points A and M below, find the coordinates of B using 3 the midpoint formula. Check your answers using equal steps.
 - **a** A is (1, 3) and M is (2, -1)**b** A is (2, 1) and M is (0, 2)**c** A is (-2, 1) and M is $(-1\frac{1}{2}, 3)$ **d** A is (3, -2) and M is $(3\frac{1}{2}, -2)$

 - **f** A is $(-3, \frac{1}{2})$ and M is (0, 0). • A is (0, 0) and M is $(2, -\frac{1}{2})$
- P is the midpoint of [IJ]. Find the coordinates of I if: 4
 - **b** P is (0, -2) and J is (-5, 1). **a** P is (2, -6) and J is (4, -3)
- [PQ] is a diameter of a circle with centre C. If P is (4, -7) and Q is (-2, -3), find the coordinates 5 of C.
- [AB] is a diameter of a circle with centre $(3\frac{1}{2}, -1)$. If B is (2, 0), find the coordinates of A. 6
- Torvald gets into a rowboat at A(1, 2) on one side of a circular 7 lake. He rows in a straight line across the lake, stopping in the middle for a rest at M(-2, 3).
 - a Find the coordinates of the point Torvald is aiming for.
 - If distances are in km, how much further does he have to Ь row?

A flagpole at F is held by four wires pegged into the ground at A, B, C, and D. Opposite pegs are the same distance away from the pole. Find the coordinates of D.

9 Use midpoints to find the fourth vertex of the parallelogram:

C

GRADIENT

When looking at line segments drawn on a set of axes, it is clear that different line segments are inclined to the horizontal at different angles. Some appear to be *steeper* than others.

The gradient or slope of a line is a measure of its steepness.

If a line passes through $A(x_1, y_1)$ and $B(x_2, y_2)$, then the horizontal or x-step is $x_2 - x_1$, and the vertical or y-step is $y_2 - y_1$.

The gradient m of the line passing through (x_1, y_1) and (x_2, y_2) is $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Example 6	Self Tutor
Find the gradient	of the line through $(-2, 1)$ and $(2, 9)$.
$(-2, 1) \qquad (2, 9)$ $\uparrow \uparrow \qquad \uparrow \uparrow$ $x_1 \ y_1 \qquad x_2 \ y_2$	The gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{9 - 1}{2 - (-2)}$ $= \frac{8}{4}$ $= 2$

The gradient of any horizontal line is 0 (zero). The gradient of any vertical line is undefined.

EXERCISE 5C

1	Find	the gradient of each line segment:											
	a		/	Ь			c				d	-	
						\mathbf{X}			-				
	e			f			q			h			
					/	/							
											\mathbf{X}		
2	On g	rid paper	, draw a	a line seg	gment w	with gra	dient:						
	a	$\frac{1}{4}$	Ь	-2	c	4		d $-\frac{1}{4}$		e 0		f	$\frac{4}{7}$
3	On th	ne same s	set of a	xes, draw	lines t	hrough	(3, 2)	with g	gradients	$5\frac{1}{2}, \frac{2}{3},$	3, and 5.		
4	On th	ne same s	set of a	xes, draw	lines t	hrough	(2, -3)	3) with	gradier	nts -4 ,	$-\frac{5}{2}, -\frac{3}{4}$	$, -\frac{1}{3},$	and 0.
5	Find	the gradi	ent of t	he line p	assing	through	:						
	a ((0, 0) and	nd (3, 5	5)	Ь	(5, 2)	and	(2, 9)		c (]	l, -4) a	nd (-	-5, -2)
	d $(-3, 4)$ and $(2, 4)$ e $(-6, 0)$ and $(0, -4)$ f $(-3, 5)$ and $(-3, 5)$								-3, 1)				
		Even								_			
	Example 7												
	Find a given that the line through $P(a, -4)$ and $Q(1, 8)$ has gradient 3.												
	The gradient of [PQ] = 3, so $\frac{8 - (-4)}{4} = 3$ {gradient formula}												
]	a - a $\therefore 12$	= 3(1 -	-a)				
							<i>∴</i> 12	=3 - 3	a				
							∴ 3a	= -9					
							a	= -0					

- 6 Find a given that the line through:
 - **a** P(1, 5) and Q(4, a) has gradient 2 **b** M(-2, a) and N(0, -2) has gradient -4
 - A(a, 8) and B(-3, -4) has gradient $\frac{2}{3}$.
- 7 A line with gradient -2 passes through the point (-1, 10). Determine where this line cuts the x-axis.

 m_1

 m_1

PARALLEL AND PERPENDICULAR LINES

For non-vertical lines l_1 and l_2 with gradients m_1 and m_2 respectively:

- The lines are **parallel** if and only if they have the same gradient. l_1 is parallel to $l_2 \Leftrightarrow m_1 = m_2$.
- The lines are **perpendicular** if and only if their gradients are the *negative* reciprocals of each other.
 - l_1 is perpendicular to $l_2 \Leftrightarrow m_2 = -\frac{1}{m_1}$

Example 8

Self Tutor

 m_2

Find t given that the line joining A(1, 4) to B(5, t) is perpendicular to a line with gradient $\frac{2}{3}$.

The gradient of $[AB] = -\frac{3}{2}$ {perpendicular to line with gradient $\frac{2}{3}$ } $\therefore \frac{t-4}{5-1} = -\frac{3}{2}$ {gradient formula} $\therefore \frac{t-4}{4} = \frac{-6}{4}$ {writing fractions with equal denominators} $\therefore t-4 = -6$ {equating numerators} $\therefore t = -2$

COLLINEAR POINTS

Three or more points are **collinear** if they lie on the same straight line. Three points A, B, and C are **collinear** if: gradient of [AB] = gradient of [BC]

EXERCISE 5D

1 Classify the following pairs of lines as parallel, perpendicular, or neither. Give reasons for your answers.

- **a** A(-7, -8), B(-1, 1), and C(3, n) are collinear
- **b** P(3, -11), Q(n, -2), and R(-5, 13) are collinear.

Background Knowledge

Transformation geometry

Contents:

- A Translations
- B Reflections
- C Rotations
- Dilations (enlargements,
 - reductions, and stretches)

A **transformation** is a change in the position, orientation, or size of an object. When a transformation is performed on an object, the result is called the **image**.

•

In this Chapter we study the following transformations:

- **translations** where every point moves a fixed distance in a given direction
 - object image
- object image

reflections about mirror lines

• rotations about a centre O through angle θ

- dilations which include:
 - enlargements and reductions about the origin O

• stretches where one axis is fixed.

A

TRANSLATIONS

A **translation** moves a figure from one place to another. Every point on the figure moves the same distance in the same direction.

If P(x, y) is **translated** h units in the x-direction and k units in the y-direction, then the image point P' has coordinates (x + h, y + k).

We write
$$P(x, y) (\stackrel{h}{\underline{k}} P'(x+h, y+k)$$

where P' is called the **image** of the object P, and

is called the translation vector.

Example 1

Self Tutor

C'

8

 \boldsymbol{x}

C

Rectangle ABCD has vertices A(1, 4), B(4, 4), C(4, 2), and D(1, 2). Find the image vertices when the rectangle is translated $\begin{pmatrix} 5\\ -1 \end{pmatrix}$. Illustrate the translation. $A(1, 4) \xrightarrow{\begin{pmatrix} 5\\ -1 \end{pmatrix}} A'(6, 3)$ В 54 - 1 $\mathbf{B}(4,\,4) \quad \underbrace{\begin{pmatrix} 5\\ -1 \end{pmatrix}} \quad \mathbf{B}'(9,\,3)$ object A' \mathbf{B}' image D С $C(4, 2) \xrightarrow{\begin{pmatrix} 5\\-1 \end{pmatrix}} C'(9, 1)$

EXERCISE 6A

a

3

1 Transform each object in the direction given:

 $D(1, 2) \begin{pmatrix} 5 \\ -1 \end{pmatrix} D'(6, 1)$

D'

4

3 units right, 1 unit up

2 units right, 3 units down 1 unit left, 4 units down

Find the translation vector for the following translations from A to B: 2

h

b (3, -2) is translated $\begin{pmatrix} -2\\ 3 \end{pmatrix}$.

82 BACKGROUND KNOWLEDGE: TRANSFORMATION GEOMETRY (Chapter 6)

4 Find the translation vector which translates the point:

a (1, -4) to (5, -1)

4

S

4

b
$$(3, 2)$$
 to $(-1, 4)$.

5 Find the point which has image:

a (0, 3) under the translation
$$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

-4

6

b
$$(4, -2)$$
 under the translation $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$

- PQRS is a rectangle.
 - a State the coordinates of P, Q, R, and S.
 - **b** Copy the rectangle, and translate it $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$.
 - State the coordinates of the image vertices P', Q', R', and S'.
- 7 Triangle ABC has vertices A(3, 1), B(-1, 2), and C(0, 4).

Þ

R

4

 \overline{x}

- a Draw triangle ABC on a set of axes.
- **b** Translate the figure $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$.
- **c** State the coordinates of the image vertices A', B', and C'.
- **d** Find the distance each point has moved.
- 8 Find the single transformation equivalent to:

a a translation of
$$\begin{pmatrix} -2\\1 \end{pmatrix}$$
 followed by a translation of $\begin{pmatrix} 4\\2 \end{pmatrix}$
b a translation of $\begin{pmatrix} 3\\-1 \end{pmatrix}$ followed by a translation of $\begin{pmatrix} 2\\5 \end{pmatrix}$

B

In the figure alongside, the triangle ABC has been **reflected** in the **mirror line** to form its image A'B'C'.

When an object is reflected in a mirror line:

- All lines and angles are the same size in the image as they were in the object.
- The mirror line is the **perpendicular bisector** of the line segment joining a point on the object with its corresponding point on the image.

REFLECTIONS

a the *x*-axis

y = x

d y = -x?

From the **Investigation** you should have observed these properties of reflecting a point (x, y):

Object	Reflection	Image
(x, y)	reflection in the x-axis	(x, -y)
(x, y)	reflection in the y-axis	(-x, y)
(x, y)	reflection in $y = x$	(y, x)
(x, y)	reflection in $y = -x$	(-y, -x)

EXERCISE 6B

1 Reflect each object in the given mirror line:

84 BACKGROUND KNOWLEDGE: TRANSFORMATION GEOMETRY (Chapter 6)

c (5, 1) under a reflection in the y-axis followed by a reflection in y = x.

9
<u> </u>

ROTATIONS

If P(x, y) is moved under a **rotation** about O through an angle of θ to a new position P'(x', y'), then OP = OP' and $P\widehat{OP'} = \theta$.

 θ is measured **positive** in the **anticlockwise** direction.

The centre of the rotation O is the only point which does not move under the rotation.

INVESTIGATION 2

In this Investigation we consider rotations about the origin O of:

• 90° anticlockwise • 180°

What to do:

- **1** The grid alongside shows rotations of (-1, 3) about the origin O. State the image of (-1, 3) under the rotation:
 - **a** 90° anticlockwise **b** 180°
 - 90° clockwise or -90° .
- **2** Plot the point (2, 3) on a grid. Draw the rotation, and state the image of (2, 3) under the rotation about O of:
 - **a** 90° anticlockwise **b** 180°
 - 90° clockwise or -90° .
- 3 Study your answers to 1 and 2. How do the coordinates of the object relate to the coordinates of the image under a rotation about O of:
 - **a** 90° anticlockwise **b** 180°

From the **Investigation** you should have observed these properties of rotating a point (x, y) about O:

Object	Rotation	Image
(x, y)	90° anticlockwise	(-y, x)
(x, y)	180°	(-x, -y)
(x, y)	90° clockwise or -90°	(y, -x)

EXERCISE 6C

1 Rotate each figure about O through the angle given:

• 90° clockwise or -90°

ROTATIONS

- a Rotate triangle ABC 90° clockwise about the origin O. 2
 - Ь State the vertex coordinates of the image.

 180° C

≤ 180°

- **3** Find the image of the point (-2, 3) under a rotation about O of:
 - **a** 90° anticlockwise
 - **b** 90° clockwise
- Find the image of the point (4, -1) under a rotation about O of: 4
 - **b** 90° clockwise a 90° anticlockwise
- Triangle ABC has vertices A(1, 4), B(-1, 5), and C(-2, 2). It is rotated anticlockwise through 5 90° about O.
 - **a** Draw triangle ABC and its image A'B'C'.
 - State the coordinates of A', B', and C'. Ь
- Triangle PQR with P(2, -4), Q(3, -2), and R(1, -1) is rotated about O through 180° . 6
 - **a** Draw triangle PQR and its image P'Q'R'.
 - **b** State the coordinates of P', Q', and R'.
- 7 Find the image of:

D

- (4, 1) under a reflection in the y-axis followed by a 90° clockwise rotation а
- (3, -2) under a 180° rotation followed by a translation through
- (-3, -1) under a reflection in y = x followed by a 90° anticlockwise rotation.

DILATIONS (ENLARGEMENTS, REDUCTIONS, AND STRETCHES)

ENLARGEMENTS AND REDUCTIONS

Suppose P(x, y) moves to P'(x', y') such that P' lies on the line (OP), and OP' = kOP. We call this a **dilation** with centre O and scale factor k.

For a dilation with centre O(0, 0) and scale factor k, (x, y) moves to (kx, ky).

- If k > 1, the image is an **enlargement** of the object.
- If 0 < k < 1, the image is a **reduction** of the object.

Example 2

Self Tutor

Consider the triangle ABC with vertices A(2, 4), B(4, 1), and C(5, 3). Draw the image of triangle ABC under a dilation with centre O and scale factor: **a** k = 2 **b** $k = \frac{1}{2}$.

DISCUSSION

NEGATIVE SCALE FACTORS

- Do we need to consider negative scale factors?
- What combination of transformations would be equivalent to a dilation with centre O and scale factor k = -2?
- If we allowed negative scale factors, what would this say about the *uniqueness* of describing a series of transformations?

VERTICAL STRETCHES WITH FIXED x-AXIS

For a vertical stretch with fixed x-axis, we stretch the figure in the vertical direction only.

Suppose P(x, y) moves to P'(x', y') such that P' lies on the line through N(x, 0) and P, and NP' = kNP.

We call this a **vertical stretch** or **vertical dilation** with scale factor k.

For a vertical stretch with scale factor k, the point (x, y) moves to (x, ky).

Example 3

Self Tutor

Consider the triangle ABC with A(2, 1), B(5, 3), and C(7, 2). Draw the image of triangle ABC under a vertical stretch with scale factor:

b $k = \frac{1}{2}$.

HORIZONTAL STRETCHES WITH FIXED y-AXIS

For a horizontal stretch with fixed y-axis, we stretch the figure in the horizontal direction only.

Suppose P(x, y) moves to P'(x', y') such that P' lies on the line through N(0, y) and P, and NP' = kNP.

We call this a **horizontal stretch** or **horizontal dilation** with scale factor k.

For a **horizontal stretch** with scale factor k, the point (x, y) moves to (kx, y).

Example 4

Self Tutor

Consider the triangle ABC with A(2, 1), B(4, 4), and C(5, 2). Draw the image of triangle ABC under a horizontal stretch with scale factor:

a
$$k=2$$

b
$$k = \frac{1}{2}$$

EXERCISE 6D

1 Copy each figure onto grid paper and perform the given dilation:

2 Find the image of:

- **a** (3, -1) under an enlargement with centre O and scale factor 2
- **b** (-3, 6) under a reduction with centre O and scale factor $\frac{2}{3}$
- (-2, -3) under a vertical stretch with scale factor 3
- **d** (1, 6) under a vertical stretch with scale factor $\frac{1}{2}$
- \bullet (-4, 3) under a horizontal stretch with scale factor $\frac{3}{4}$
- f (1.2, 2) under a horizontal stretch with scale factor 5.
- **3** Sketch the image of a circle with centre O and radius 3 units under:
 - **a** a dilation with centre O and scale factor 2 **b** a vertical stretch with scale factor $\frac{2}{3}$
 - **c** a horizontal stretch with scale factor $\frac{1}{3}$.
- 4 Describe the transformation which maps the object onto the image:

DIAGRAMS

Background Knowledge

Similarity

Contents:

- A Similar figures
- **B** Similar triangles
- **C** Problem solving
- Areas and volumes of similar objects

SIMILAR FIGURES

Two figures are similar if one is an enlargement of the other.

A'B'C'D' is an enlargement of ABCD. The two figures are therefore similar.

Notice that

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'D'}{CD} = \frac{D'A'}{DA} = 3$$

so the corresponding side lengths are in the **same ratio**.

We say that k = 3 is the scale factor for the enlargement.

When a figure is enlarged or reduced, the sizes of its angles do not change. The figures are therefore **equiangular**.

Two figures are similar if:

- the figures are equiangular and
- the corresponding side lengths are in the same ratio.

We say that the figures are *in proportion*.

EXERCISE 7A

1 Determine whether the following pairs of figures are similar:

2 On a standard football pitch, the penalty box and the goal area have the dimensions shown. Are the two rectangles similar?

- **3** Comment on the truth of the following statements. If a statement is false, justify your answer with an illustration.
 - a All squares are similar.
 - All semi-circles are similar.
 - All spheres are similar.

- **b** All rectangles are similar.
- **d** All right-angled triangles are similar.
- f All cones are similar.

4 Given that the figures are similar, find the exact value of x:

5 Rectangles ABCD and FGHE are similar. Find the length of FG.

6 Find x given that triangle ABC is similar to triangle A'B'C':

b C 18 mm x mm B' 10 mm C' B A' 12 mm C'

7 Sketch two quadrilaterals that:

- **a** are equiangular, but not similar
- **b** have sides in proportion, but are not similar.

SIMILAR TRIANGLES

Two triangles are similar if either:

• they are equiangular or • their side lengths are in the same ratio.

Notice that:

- either of these properties is sufficient to prove that two triangles are similar
- since the angles of any triangle add up to 180°, if two angles of one triangle are equal to two angles of another triangle, then the remaining angles of the triangles must also be equal.

FINDING SIDE LENGTHS

Once we have established that two triangles are similar, we may use the fact that corresponding sides are in the same ratio to find unknown lengths.

B

EXERCISE 7B

1 Show that the following figures possess similar triangles:

2 In each figure, establish that a pair of triangles is similar. Hence find x.

C

PROBLEM SOLVING

Diagrams are very useful. Make sure your diagrams are neat and large enough.

The properties of similar triangles have been known since ancient times. However, even with the technologically advanced measuring instruments available today, similar triangles are still important for finding heights and distances which would otherwise be difficult to measure.

Step 1:	Read the question carefully. Draw a diagram showing all of the given information.	
Step 2:	Introduce a variable such as x , for the unknown quantity to be found.	
Step 3:	Establish that a pair of triangles are similar, and hence write an equation involving the variable.	
Step 4:	Solve the equation.	
Step 5:	Answer the question in a sentence.	

Example 5

When a 30 cm stick is stood vertically on the ground, it casts a 24 cm shadow. At the same time a man casts a shadow of length 152 cm. How tall is the man?

The sun shines at the same angle on both the stick and the man. We suppose this is angle α° to the horizontal.

Let the man be h cm tall.

The triangles are equiangular and therefore similar.

$$\therefore \quad \frac{h}{30} = \frac{152}{24} \qquad \{\text{same ratio}\}$$
$$\therefore \quad h = \frac{152}{24} \times 30$$
$$\therefore \quad h = 190$$

The man is 190 cm tall.

Self Tutor

EXERCISE 7C

3

2.4 m

1 Find the height of the person.

- 2 Stevie wants to measure the height of a building. She stands at the edge of the building's shadow with a 1 m ruler.
 - **a** Find the height of the building.
 - **b** Does Stevie necessarily have to stand at the edge of the shadow? Explain your answer.

Ella is constructing a zip-line from the top of an 18 m high hill as shown. She will set up a braking system for the last 5 m of cable. Find the total length of the cable.

- an br th 2.4 m
- 4 Harjeet's ladder has gotten stuck around a corner. How long is the ladder?

5 A paper plane is released from a height of 1.8 m. It passes over a chair and continues to the ground. How far does the paper plane fly through the air?

6 A 1.8 m tall man stands in front of a projector as shown. How far does his shadow extend up the wall?

AREAS AND VOLUMES OF SIMILAR OBJECTS

We have seen that if two objects are similar, then there is a relationship between the lengths of their sides. The sides are *in proportion*.

For 2 and 3 dimensional objects, we can establish relationships between the areas and the volumes of the objects.

For example:

• The two circles shown are similar. Circle **B** is an enlargement of circle **A** with scale factor k.

Area of
$$\mathbf{B} = \pi (kr)^2$$

= $k^2 \times \pi r^2$
= $k^2 \times \text{area of } \mathbf{A}$

• The two rectangles shown are also similar. Rectangle **B** is an enlargement of rectangle **A** with scale factor k.

Area of $\mathbf{B} = ka \times kb$ = $k^2 \times ab$ = $k^2 \times a$ rea of \mathbf{A}

• The two boxes shown are similar. Box **B** is an enlargement of box **A** with scale factor k.

Using examples like this we can conclude that:

- If a 2-dimensional object is enlarged with scale factor k to produce a similar object, the new area = $k^2 \times$ the old area.
- If a 3-dimensional object is enlarged with scale factor k to produce a similar object, the new volume $= k^3 \times$ the old volume.

EXERCISE 7D

1 For each pair of similar shapes, find the unknown area:

2 For each pair of similar shapes, find the unknown length:

3 Given the following similar objects, find the unknown value:

ANSWERS 103

ANSWERS	3 a, b 1 2 (3) 4 5 (6) 7 8 (9) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 c 15, 30 30 4 35 36 37 38 39 40
	4 a 36, 72, 108 b 60, 120
1 a 23 b 18 c 78 d 168 2 a 503 b 3076 3 €27 4 Yes, the total weight is only 1484 kg. 5 \$24 149	 c none in the list (first one is 180) 5 a 10 b 21 c 20 d 24 e 18 f 60 g 140 h 36 6 a 105 b 198 7 in 12 hours' time 8 14.4 km
6 a 437 b 28 c 720	EXERCISE 1G
7 82 buckets of chips 8 38 400 apples 9 25 laps 10 a 840 apartments b \$2 856 000 11 63 plane loads	1 a 7 b 8 c 11 d 12 2 a 17 b 24 c 39 d 48
EXERCISE 1B 1 a 3^2 b 5^3 c 7^2 d 2^5 e $3^2 \times 7^3$ f 2×5^3 g $3^3 \times 5 \times 11^2$	3 a 3 and 4 b 5 and 6 c 10 and 11 d 12 and 13 4 a 1 b -1 c -3 d 2 e -2 f -4 g 5 h 6 i -10 j 7
h $2^4 \times 3^2 \times 7$ i $2^3 \times 5^2$	EXERCISE 1H
2 a 9 b 24 c 560 d 1300 e 550 f 360	1 a 7 b 14 c 13 d 5 e 8 f 5 g 7 h 5 i 2 j 4 k 1 l 8 2 a 15 b 3 c 3 d 16 e 32 f 2
EXERCISE 1C	g 17 h 4 i 8 j 8 k 6 l 36
1 a 1, 2, 4 b 1, 2, 3, 6 c 1, 3, 9 d 1, 3, 5, 15 e 1, 2, 4, 8, 16 f 1, 17 g 1, 2, 11, 22 h 1, 2, 3, 4, 6, 8, 12, 24 i 1, 2, 4, 7, 14, 28 j 1, 2, 3, 6, 7, 14, 21, 42 k 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 10 12, 15, 20, 30, 60 10 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108	g 23 h 1 i 7 j 1 k 6 l -1
2 a $36 = 6 \times 6$ b $38 = 2 \times 19$ c $48 = 12 \times 4$ d $90 = 5 \times 18$ e $88 = 8 \times 11$ f $54 = 3 \times 18$ g $72 = 12 \times 6$ h $60 = 12 \times 5$ 3 a 1×10 2×5 b 1×14 2×7	6 a 12 b −12 c 38 d 2 e −12 f −6 g 30 h 3 i −11 j 4 k −1 l −2 m 5 n −4 o −1 EXERCISE 11
c $1 \times 10, 2 \times 0$ c $1 \times 13, 2 \times 10, 4 \times 5$ d $1 \times 20, 2 \times 10, 4 \times 5$	1 a 3 b 11 c -7 d 16 e -6
 4 a 6, 8, 10 5 a even b even c even d odd e odd f odd g even h odd i even 	2 a 2 b 2 c $\frac{1}{4}$ d $\frac{1}{4}$
EXERCISE 1D	1 a 90 b 80 c 90 d 130 e 160
1 a 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 b one, 2 c i 3 ii 15, 21, 25, 27 iii 29	f 100 g 640 h 1820 i 700 j 3050 2 a 200 b 300 c 3800 d 4000 e 26 300
2 Note: Other answers are possible. a $985 = 5 \times 197$ b $7263 = 3 \times 2421$ c $5840 = 10 \times 584$ d $1001 = 11 \times 91$	3 a 8000 b 4000 c 19000 d 20000 e 115000 4 a 8850 m b 32000 km^2 c 4750000 people d 85500 people e 7700000 km ² f 5400 kg
3 a 2×7 b $2^2 \times 5$ c $2^2 \times 7$ d 2^5	g 17 000 km h 400 000 km i 428 000 000 people
e $2^3 \times 5$ f $2 \times 5 \times 7$ g $2^3 \times 7$ h $2^5 \times 3$ i $2^3 \times 3 \times 5$ j 13^2	EXERCISE 1J.2
EXERCISE 1E	$\begin{bmatrix} 1 & 0 \cdot 2 & 0 & 0 \cdot 18 & \mathbf{C} & 3 \cdot 3 & \mathbf{C} & 17 \cdot 40 \\ 2 \cdot 2 \cdot 132 & \mathbf{f} & 0 \cdot 2 & \mathbf{c} & 0 \cdot 10 & \mathbf{h} & 102 \cdot 38 \end{bmatrix}$
1 a 4 b 3 c 7 d 9 e 13 f 6 g 3 h 4	2 9.6 s 3 1.44 m 4 0.01 cm 5 a 3.1 b 3.142 c 3.1416 6 b 0.26 c 0.263158
	7 a ≈ 1.414 b ≈ 2.236 c ≈ 4.796 d ≈ 1.587
EXERCISE 1F 1 a 4, 8, 12, 16, 20, 24 b 5, 10, 15, 20, 25, 30 c 7, 14, 21, 28, 35, 42 d 11, 22, 33, 44, 55, 66	$e \approx -2.466 f \approx 7.663$ $e \approx -2.466 f \approx 7.663$ $e \approx 4.150 d \approx 1.361$ $e \approx -2.466 f \approx 7.663$ $e \approx -2.466 f \approx 7.663$ $e \approx -2.466 f \approx 7.41 b \approx 5.02$
2 a 24 b 54	i 0.48

104 ANSWERS

- **9** 1.74 goals per game
- 10 While $2.45 \text{ m} \approx 2.5 \text{ m}$ is correct, Wang should have used the original value of 2.45 m to round to the nearest integer, so $2.45~\mathrm{m}\approx 2~\mathrm{m}.$

EXI	ERCI	SE 1J.3			
1	a	130	b 8300	c 2.6 d	0.013
	e	160000	f 1.1	g 4000 h	6.6
2	a	83100	b 10000	c 0.105 d	31.7
	e	70.7	f 4.00	g 0.0367 h	20.0
3	a	16.38	b 438.2	c 6874000 d	0.02889
4	a	100 000 p	eople b 96 00	0 people c 96	300 people
5	a	≈ 2.65	$ \approx 6.28 $	$\mathbf{c} \approx 2.12$ d	≈ 1970000
	e	pprox 0.932	f ≈ 4.39	g ≈ 1.79 h	≈ 5.73
6	900) seats	7 256 m^2	8 a \$188 k	\$188.06
EVI	DCI				
EAI	SKCI		b 420	2400	600
	a	180	• 420 • 24,000	c 2400	2400
		2000	60,000	y 1000	120.000
	m	3	n 3.5	• 180	120000
2	a	30	b 12	c 25	15
	e	200	f 1000	q 5	250
	I	0.2	10	k 2000	5
3	а	€24	b \$600	s \$630	£60
4	а	240 km	b 4000 days	20 tonnes	
			• 1000 aujs	20 10111100	
EXI	ERCI				
1	a	5x	2c c $7q$	d 4fg e 6p	q + 9rs
	9	6 <i>ab</i>	4mn 5ab] 2pq K jk	d dhp
2	a	pq + r	b $4x + 5y$	aabaa abaa abaa abaa abaa abaa abaa ab	ab-c
	e :	b - ac	f = f - f g	ac + ad	12 - 6rs
	1	3(x+y)	5(a-1)	$\mathbf{K} = 8(w - x)$	pq(r-2)
3	a	20 \circ \circ	5q c $2x + c$	-4y a $3c+e$	b 9 9 <i>J</i>
	е і	3+z+2	y + 4a + 2b + 5b + 5b	3r $3r$ $2+4g$	n 5 – 5a - 9h
	1			$ f \searrow f $	20
1	a	$a \times a \times a$ $5 \times a \times a$	$x \times a$	$\mathbf{J} \times \mathbf{J}$	
		$4 \times n \times n$	$\times n$	$\begin{array}{c} \mathbf{d} 5 \times a \times 5 \times a \\ \mathbf{f} 4 \times n \times 4 \times n \end{array}$	$\times 4 \times n$
	q	$3 \times t \times t$	$\times t \times t \times t$	h $5 \times x \times x \times y$	
	ĩ	$5 \times x \times y$	$\times x imes y$	$7 \times f \times f \times q$	$\times q \times q$
	k	$p \times p + 2$	$\times q$	$p \times p \times p - 3$	$\times q \times q$
5	a	$3k^2$	b $4a^3$	c $2d^4$ d	$4pq^2$
	e	$3f^{2}g^{2}$	f $w^2 x y^3$	g $m+m^2$ h	$n^3 + n$
	1	$y^2 - z^4$	$a^2 + 7a$	k $8b - b^3$	$2pq^2 + 6r^2s$
	m	$2h^2 - hj$	n $3x + 5x^3$	• $a^2 + 2b^3 - ab^2$	2
EX	ERCI	SE 2B			
1	a	x + 6	b $q + 11$	c $3b + 3$ d	2a + 7
	e	2d	f $2q + 5$	g 2y h	3z
	1	$2g^2$	cannot be s	implified k	w^2
	1	cannot be	simplified m	2x n 9ab	• 4m
2	a	0 6	7p c canno	ot be simplified	d 6 <i>pq</i>
	e	4ab f	$2q^2$ g $12w$	h 13xy i 3z	0
	k	9d-9	$7g - 7g^2$	$4s + 4s^2$	
	n	cannot be	simplified	• cannot be sim	plified

°	a	δx	0a	-8x	• canno		pinied
	e	5k-5	f -1	10n	-15i	n \sim 100 n n \sim 100 n n \sim 100 n n \sim 100 n n n n \sim 100 n	h $-5j + 4$
		7y	7y	k 9y	5y		
4	а	-2x - 1	b 5t	+3	-2x	-y	6pq-4
	e	10cd	f —a	a	$5x^2$ -	-2	-3n-3
	1	-5v - 5u	v j —:	$3x^2$	k 5a -	7b	-5z - 7
	m	p-2pq	n —7	7mn - 2m	n		
EXE	KC						
1	а	2x + 8	b 3 <i>x</i>	- 3	-2x	-4	-2+x
	e	$x^2 + x$	f 8x	+20	9 4x -	1	h $x^2 - x$
		3x	6 x	+2	k 16 –	6x	22x + 35
	m	$2x^2 - x$	$\mathbf{n} a^2$	- 6	• 4 <i>a</i> –	36	
2	а	$x^2 - x - $	6	b $x^2 + 3x^2$	x-4	$ x^2 $	+5x+6
	d	$2x^2 + 5x$	+3	$aagge 3x^2 +$	10x + 8	f 10	$x^2 + x - 2$
	9	$3x^2 + x -$	- 10	h $14 + 1'$	$7x - 6x^2$	2 5-	$-13x - 6x^2$
	j	$15x^2 + 11$	1x - 12		k 2 - 1	11x + 15	δx^2
		21 - 17x	$+ 2x^{2}$		m 15 –	16x + 4	x^2
	n	$-x^2 - 3x$	r-2		\circ $-4x^2$	$x^{2} - 2x + $	- 6
3	a	$x^2 - 36$	b x^2	-64	$4x^2$ -	-1 ($9x^2 - 4$
	e	$16x^2 - 25$	5 f 25	$x^2 - 9$	9 9 - a	c^2	h $49 - x^2$
	1	$49 - 4x^2$	x ²	-2	$k x^2 -$	5	$4x^2 - 3$
4	а	$x^2 + 10x$	+25	b $x^2 + 1$	4x + 49	x^2	-4x + 4
	d	$x^2 - 12x$	+36	e 9 + 6x	$+x^{2}$	f 25	$+10x + x^{2}$
	g	121 - 223	$x + x^2$		h 100 -	-20x +	x^2
	ĩ	$4x^2 + 28x^2$	x + 49		$9x^2$ -	+12x +	4
	k	25 - 20x	$+4x^{2}$		49 -	42x + 9	x^2
EXE	RC	SE 2D					
EXE 1	RCI a	SE 2D $x+15$	b <u>x</u> -	+3	$\frac{x+4}{x+4}$	d	14 - x
EXE 1	a	$\frac{x+15}{5}$	b <u>x -</u>	$\frac{+3}{r}$	$\frac{x+4}{2}$	d	$\frac{14-x}{4}$
EXE 1	a e	$\frac{x+15}{5}$ $\frac{8x-2}{5}$	b $\frac{x}{x}$	$\frac{+3}{x}$ $+17$	$\frac{x+4}{2}$ $\frac{x^2+4}{2}$	d <u>4</u> h	$\frac{14-x}{4}$ $\frac{x^2-x-3}{3}$
EXE 1	a e	$\frac{x+15}{5}$ $\frac{8x-2}{15}$	b $\frac{x}{x}$	$\frac{+3}{x}$ $\frac{+17}{12}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$	$\frac{4}{2}$ h	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$
EXE 1	a e	$\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{5}$	b $\frac{x}{3}$ f $\frac{4x}{11}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $-2x$	$\frac{x+4}{2}$ $\frac{x^2+2}{2x}$ $\frac{1-3x}{2}$	$\frac{d}{4}$ h	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{3x}$
EXE 1 2	a e a	$\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$	b $\frac{x}{x}$ f $\frac{4x}{x}$ b $\frac{11}{x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$	$\frac{x+4}{2} = \frac{x^2+4}{2x} = \frac{x^2+4}{2x} = \frac{1-3x}{x-1}$	$\frac{4}{x} = \frac{1}{x}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1 2	a a a	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $2x+3$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$	$\frac{4}{x}$ h	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1	a a e	$\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$	$\frac{4}{2}$ h	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1	a e a	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ 5x+4	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2} = \frac{x^2+4}{2x} = \frac{x^2+4}{2x} = \frac{1-3x}{x-1}$	$\frac{4}{x}$ d	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1 2 3	ERCI a e a e a	$SE 2D = \frac{x+15}{5} = \frac{8x-2}{15} = \frac{x+5}{x+2} = \frac{2x+3}{x+1} = \frac{5x+4}{x(x+2)}$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1-3x}{x-1}$	$\frac{4}{2} \qquad h$ $\frac{x}{2} \qquad d$ $\frac{1}{(x-2)(x-2)}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ 3)
EXE 1 2 3	ERCI a e a a	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $x + 1$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x}{1-x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+x}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-x)^2}$	d $\frac{4}{1}$ h $\frac{1}{(x-1)(x-1)}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1 2 3	ERCI a e a e c	$\frac{x+15}{5} \\ \frac{8x-2}{15} \\ \frac{x+5}{x+2} \\ \frac{2x+3}{x+1} \\ \frac{5x+4}{x(x+2)} \\ -\frac{x+}{(x+1)} \\ \end{array}$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x}{x-2}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$	d $\frac{4}{2}$ h $\frac{x}{2}$ d $\frac{1}{(x-2)(x-4)^2}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$
EXE 1 2 3	a a a a c	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $7x^{2} - 6x$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x-1}{x}$ $f \frac{x-1}{x}$ $f \frac{x-1}{x}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{8x^2-4}{(x+4)^2}$ $\frac{3x^2-4}{(x+4)^2}$	d $\frac{4}{x}$ h $\frac{1}{x^{2}}$ d $\frac{1}{x^{2}}$ \frac	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $3)$ $3)$ 3
EXE 1 2 3	ERCI a a a c c	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(2x-5)}$	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x-1}{x-2}$ $\frac{-10}{(x-2)}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{3x^2-1}{(x+4)^2}$	d $\frac{4}{x}$ h $\frac{x}{x}$ d $\frac{1}{x^{2}}$ d $\frac{1}{x^{2}}$ $\frac{1}{x^{2}}$ $\frac{1}{x^{2}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $3)$ $3)$ $3)$ $3)$ $3)$
EXE 1 2 3	ERCI a a a c c	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(x-1)}$	b $\frac{x}{x}$ f $\frac{4x}{x}$ b $\frac{11}{x}$ f $\frac{x}{1-x}$ f $\frac{x}{1-x}$ f $\frac{x}{x-2}$ $\frac{x-25}{(x-2)}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{8x^2-1}{(x+4)^2}$ $\frac{3x^2-1}{(2x+4)^2}$	$ \frac{4}{1} h \\ \frac{x}{1} d \\ \frac{1}{-2)(x-4)} \\ \frac{1}{+6x+8} \\ \frac{1}{4}(x-4) \\ \frac{1}{-1}(x-4) \\ \frac$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$
EXE 1 2 3 EXE	RCI a a a c c e RCI	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)}$ (SE 2E	b $\frac{x}{x}$ f $\frac{4x}{x}$ b $\frac{11}{x}$ f $\frac{x}{1-x}$ f $\frac{x}{1-x}$ f $\frac{x}{x-2}$ $\frac{x-25}{(x-2)}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{8x^2-4}{(x+2)^2}$ $\frac{3x^2-4}{(2x+1)^2}$	$ \frac{4}{4} = h $ $ \frac{1}{x} = d $ $ \frac{1}{x^{2}} = \frac{1}{x^{2}} $	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$
EXE 1 2 3 EXE	RCI a a a c c e c c e c	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(x-2)}$ SE 2E	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x-1}{x-2}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{x-2}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{3x^2-1}{(2x+1)^2}$	d $\frac{4}{x}$ h $\frac{1}{-2)(x-x-x+6x+8x+1)(x-4x$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\frac{3}{3}$ $\frac{3}{3}$
EXE 1 2 3 EXE 1	ERCI a a e a c c e ERCI a	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6a}{(2x-5)(x-2)}$ SE 2E $\frac{7x}{4y}$ b	$b \frac{x}{a}$ $f \frac{4x}{a}$ $b \frac{11}{x}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $-\frac{1}{(x-1)^2}$ $\frac{8x^2-1}{(x+4)^2}$ $\frac{3x^2-1}{(2x+4)^2}$ $\frac{3x^2-1}{(2x+4)^2}$	d $\frac{4}{-}$ h $\frac{x}{-}$ d $\frac{1}{-2)(x+6x+8)}$ $\frac{4}{4}(x-4)(x-4)$ $\frac{+3x+1}{-1}(x)$ e $\frac{1}{3}$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{5}$ $$
EXE 1 2 3 EXE 1	RCI a a a c c c c c c c a	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(x-2)}$ SE 2E $\frac{7x}{4y}$ b $\frac{3x}{2}$ h	$b \frac{x}{a}$ $f \frac{4x}{a}$ $b \frac{11}{x}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $f \frac{x}{2}$ $f \frac{x}{2}$ $f \frac{x}{2}$ $f \frac{x}{2}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{4x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $\frac{1-3x}{x-1}$ $\frac{3x^2}{(x+4)}$ $\frac{3x^2}{(2x+4)}$ $\frac{3x^2}{(2x+4)}$ $\frac{3x}{2}$	d $\frac{4}{4}$ h $\frac{x}{4}$ d $\frac{1}{-2)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$
EXE 1 2 3 EXE 1	ERCI a a e a c c e ERCI a g	$SE 2D$ $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(0)}$ $SE 2E$ $\frac{7x}{4y}$ $\frac{3x}{8y}$ h	$b \frac{x}{a}$ $f \frac{4x}{a}$ $b \frac{11}{x}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$ $1 \mathbf{i}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$	d $\frac{4}{1}$ h $\frac{x}{1}$ d $\frac{1}{-2)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{33}$ $\overline{33}$ $f \frac{30}{t^2}$ $f \frac{30}{t^2}$ $f \frac{5x^2}{4y}$
EXE 1 2 3 EXE 1	RCI a a a c a c c e s RCI a g	SE 2D $\frac{x+15}{5}$ $\frac{8x-2}{15}$ $\frac{x+5}{x+2}$ $\frac{2x+3}{x+1}$ $\frac{5x+4}{x(x+2)}$ $-\frac{x+4}{(x+1)}$ $\frac{7x^2-6x}{(2x-5)(0)}$ SE 2E $\frac{7x}{4y}$ b $\frac{3x}{8y}$ h x^2	$b \frac{x}{a}$ $f \frac{4x}{a}$ $b \frac{11}{x}$ $f \frac{x}{1-a}$ $f \frac{x-a}{1-a}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$ $1 \mathbf{i}$ 4	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{4x}$	$\frac{x+4}{2}$ $\frac{x^2+4}{2x}$ $\frac{1-3x}{x-1}$ $\frac{1-3x}{x-1}$ $\frac{3x^2}{(x+4)}$ $\frac{3x^2}{(2x+4)}$ $\frac{3x^2}{(2x+4)}$ $\frac{3m}{2}$ $15a$	d $\frac{4}{1}$ h $\frac{x}{1}$ d $\frac{1}{-2)(x-4}$ $+ \frac{6x+8}{4}(x-4)$ $+ \frac{3x+1}{(1)(x-4)}$ $\frac{1}{(1)(x$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{33}$ $\overline{5}$ $\overline{33}$ $f \frac{30}{t^2}$ $f \frac{30}{t^2}$ $\frac{5x^2}{4y}$
EXE 1 2 3 EXE 1	ERCI a a e a c c e ERCI a g a	$SE 2D$ $\frac{x + 15}{5}$ $\frac{8x - 2}{15}$ $\frac{x + 5}{x + 2}$ $\frac{2x + 3}{x + 1}$ $\frac{5x + 4}{x(x + 2)}$ $-\frac{x + 4}{(x + 1)}$ $\frac{7x^2 - 6x}{(2x - 5)(0)}$ $SE 2E$ $\frac{7x}{4y}$ $\frac{3x}{8y}$ h $\frac{x^2}{6}$ b	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x-1}{1-x}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$ $1 \mathbf{i}$ $\frac{4}{x^3}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{4x}$ $\frac{16}{k^2}$ $\frac{16}{k^2}$	$\frac{x+4}{2} = \frac{x^2+4}{2x}$ $\frac{x^2+4}{2x}$ $\frac{x^2+4}{2x} = \frac{x^2+4}{2x}$ $\frac{x^2-4}{x-1}$ $\frac{x^2-4}{x+4} = \frac{3x^2-4}{(2x+4)}$ $\frac{3x^2-4}{(2x+4)}$	d $\frac{4}{1}$ h $\frac{x}{1}$ d $\frac{1}{-2)(x-4}$ $+\frac{6x+8}{4}(x-4)$ $+\frac{3x+1}{1}(x-4)$ $\frac{1}{1$	$\frac{\frac{14-x}{4}}{\frac{x^2-x-3}{3x}}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $f \frac{30}{t^2}$ $f \frac{30}{t^2}$ $f \frac{5x^2}{4y}$ $\overline{4}$ $f 2a$
EXE 1 2 3 EXE 1	ERCI a a e a c c e ERCI a a a	$SE 2D$ $\frac{x + 15}{5}$ $\frac{8x - 2}{15}$ $\frac{x + 5}{x + 2}$ $\frac{2x + 3}{x + 1}$ $\frac{5x + 4}{x(x + 2)}$ $-\frac{x + 4}{(x + 1)}$ $\frac{7x^2 - 6x}{(2x - 5)(0)}$ $SE 2E$ $\frac{7x}{4y}$ $\frac{3x}{8y}$ $\frac{x^2}{6}$ x^3	$b \frac{x}{x}$ $f \frac{4x}{x}$ $b \frac{11}{x}$ $f \frac{x}{1-x}$ $f \frac{x-1}{1-x}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$ $1 \mathbf{i}$ $\frac{4}{x^3}$ 6	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{4x}$ $\frac{16}{k^2}$ $\frac{16}{k^2}$	$\mathbf{x} + \frac{4}{2}$ $\mathbf{x}^{2} + \frac{4}{2x}$ $\mathbf{x}^{2} + \frac{1}{2x}$ $\mathbf{x}^{2} + \frac{1}{2x}$ $\mathbf{x}^{2} - \frac{1}{x}$ \mathbf{x}^{2}	d $\frac{4}{4}$ h $\frac{x}{4}$ d $\frac{1}{-2)(x-4)}$ $+ \frac{6x+8}{4}(x-4)$ $+ \frac{3x+1}{1}(x-4)$ $\frac{28m^2}{3n}$ $\frac{28m^2}{3n}$ $\frac{x^2}{8}$	$\frac{14-x}{4}$ $\frac{x^2-x-3}{3x}$ $\frac{5x+2}{x+1}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$ $f \frac{30}{t^2}$ $f \frac{30}{t^2}$ $f \frac{30}{t^2}$ $f 2a$ $\overline{4}$
EXE 1 2 3 EXE 1	ERCI a a c a c c c c c c a s RCI a g a s	$SE 2D$ $\frac{x + 15}{5}$ $\frac{8x - 2}{15}$ $\frac{x + 5}{x + 2}$ $\frac{2x + 3}{x + 1}$ $\frac{5x + 4}{x(x + 2)}$ $-\frac{x + 4}{(x + 1)}$ $\frac{7x^2 - 6x}{(2x - 5)(0)}$ $SE 2E$ $\frac{7x}{4y}$ $\frac{3x}{8y}$ h $\frac{x^2}{6}$ b $\frac{x^3}{3}$ h	$b \frac{x}{a}$ $f \frac{4x}{a}$ $b \frac{11}{x}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $f \frac{x}{1-a}$ $\frac{-10}{(x-2)}$ $\frac{x-25}{(x-2)}$ $\frac{a}{b}$ $1 \mathbf{i}$ $\frac{4}{x^3}$ $\frac{6}{z}$	$\frac{+3}{x}$ $\frac{+17}{12}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{-2x}{-4}$ $\frac{+3}{-x}$ $\frac{16}{k^2}$ $\frac{16}{k^2}$ $\frac{16}{k^2}$	$\frac{x+4}{2}$ $\frac{x^{2}+4}{2x}$ $\frac{x^{2}+4}{2x}$ $\frac{1-3x}{x-1}$ $\frac{1-3x}{x-1}$ $\frac{3x^{2}-1}{(x+4)}$ $\frac{3x^{2}-1}{(2x+4)}$ $\frac{3x^{2}-1}{(2x+4)}$ $\frac{3x}{2}$ $\frac{3x}{15a}$ $\frac{3m}{2}$ $\frac{3m}{15a}$ $\frac{6}{5}$ $\frac{b}{15}$	d $\frac{4}{-}$ h $\frac{x}{-}$ d $\frac{1}{-2)(x}$ $+\frac{6x+8}{4)(x-4}$ $+\frac{3x+1}{-1)(x}$ e $\frac{1}{3}$ $\frac{28m^2}{3n}$ e $\frac{x^2}{8}$ k $\frac{4}{r^3}$	$\frac{14-x}{4}$ $\frac{x^2-x-3}{3x}$ $\frac{5x+2}{x+1}$ $\frac{5x+2}{x+1}$ $\frac{3}{3}$ $f \frac{30}{t^2}$

d x = -4

EXERCISE	2F
-----------------	----

EXE	RCI	SE 2F				
1	a	2(x - 3)	ь	3(x+1)	c 2	2(3-x)
	d	x(x+2)	e	x(3-x)	f (Bx(x+3)
	9	x(2x+7)	h	2x(2x-5)	5) i 3	3x(2x-5)
2	а	(x+6)(x-	- 6)	Ь	(3x+5)(3)	(x-5)
	č	(a + b)(a) (4x + 1)(4x)	(-1)	d	2(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2	(-2)
		$\frac{100}{2}$ + $\frac{1}{2}$	~ · / ?		$\frac{2(w + 2)(w}{4(w + \sqrt{5})}$	_) (m(<u>F</u>)
	6	$3(x + \sqrt{3})($	$x - \sqrt{3}$		$4(x + \sqrt{3})$	$(x-\sqrt{3})$
3	a	$(x-4)^2$	Ь	$(x-5)^2$	c 2	$2(x-2)^2$
	d	$(4x+5)^2$	e	$(3x+2)^2$	f ($(x - 11)^2$
4	a	(x+1)(x+	- 8)	b	(x+3)(x -	+ 4)
	c	(x+2)(x -	- 9)	d	(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)	+7)
	e	(x - 3)(x -	- 6)	f	(x-2)(x -	+ 3)
	9	-(x+1)(x	-2)	h	3(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3	-11)
	1	$-2(x+1)^2$		i	2(x-2)(x	+5)
	k	2(x-8)(x	+ 3)	1	-2(x-1)	(x - 6)
	m	$-3(x-1)^2$		n	$-(x+1)^2$	
	0	-5(x+2)((x - 4)			
5	а	(2x-3)(x)	$(+4)^{(-)}$	ь	(3x+1)(x)	(-2)
	č	(2x - 3)(x - 2)(x - 2)(x - 3)(x - 3	(-1)	d	(3x-2)(2)	(x+1)
	e	(2x-3)(2x)	(r + 1)	f	(5x-3)(2)	(x + 1)
		(2x-0)(2x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(-6		(3x+7)(x	(-4)
	1	(2w + 1)(w) (4x + 3)(2x)	(-1)		(5x+1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-	(x-3)
	k	(4x + 0)(2x - 1)(r	– 8)		(3x+3)(2)	x = 0 x + 1)
	m	(5x + 1)(x - 2(2x + 3))	(r-1)		(6x + 2)(2) (6x + 1)(2)	(x + 1) (x - 3)
		-3(2x+3)	$\begin{pmatrix} x & 1 \end{pmatrix}$ (x - 2)		(0x+1)(2x-2)(2x-	(3r - 5)
	ă	-0(2x+1) (4x-0)(2x	(x-2) $x \pm 3$		(3x - 2)(3x - 2)(3x - 3)(3x	(5x - 5) $r \perp 1)$
	1	$(4x - 3)(2x - 6x \pm 1)(2x - 6x)(2x - 6$	$r \pm 3$		(4x + 3)(3) (5x - 4)(3)	$x \pm 1)$ x = 2)
	1	(0x + 1)(2x + 5)(2x	r = 3		(0x - 4)(0	x = 2)
		$(1x \pm 0)(2x$	5 – 5)			
EXE	RCI	SE 2G				
1	a	15	b 3	¢	-1	d -10
	e	-8	f 11	9	14	h -10
2	a	8	b 1	c	6	d 6
	e	1	f -18	9	-4	h -8
3	a	$\frac{3}{2}$	b -1	c	$\frac{1}{2}$	d $-\frac{3}{5}$
4	а	<u>3</u>	b -1	c	_ <u>3</u>	d -5
1		4	L 07		2	- 1
2	a	1	-27		20 26	
	e	05	21	3	30	1 18
6	a	1	b 4	. с	5	$\checkmark \sqrt{53}$
	e	$\sqrt{2}$	f √58	3		
EXE	RCI	SE 2H				
1	a	x = -2	b $x =$	7 c	x = 6	d $x = -4$
	e	$x = \frac{11}{2}$	f x =	-3 9	x = 7	h $x = \frac{4}{3}$
2	а	x = 45	b x =	64 c	x = -3	d $x = 35$
3	а	x = 51	$\mathbf{b} x =$	1 c	x = 7	d $x = \frac{23}{23}$
Ŭ		r = 17	• w	14		2
Ŀ	•	u = 1	x =	1 - T	m = 0	d
1	d	x = 1 x = 1	$\mathbf{v} x =$	-4 C	x = 9	$\mathbf{x} = -2$
_	e	$x = \overline{2}$	<i>x</i> =	0		
5	a	x = 6	b x =	3 C	x = 2	d $x = -4$
	e	$x = \frac{1}{2}$	f x =	3		
6	a	x = 1	b x =	4 c	x = -2	d $x = -\frac{7}{10}$

7	The equation can be simplified to	-3 = -3,	which is true for
	all values of x.		

8 The equation can be simplified to -2 = 6, but there are no values of x for which this is true. So, the equation has no solutions.

a
$$x = \frac{10}{3}$$
 b $x = \frac{25}{6}$ **c** $x = \frac{17}{5}$
e $x = \frac{3}{4}$ **f** $x = \frac{7}{12}$

EXERCISE 21

9

1 a $x > 9$	$x \leqslant 7$	$x \ge -2$	d $x < -4$
e $x \leqslant 9$ i $x < 6$	f $x < -9$	g $x \ge 5$	h $x < -3$
2 a $x\leqslant7$	b $x > -6$	$x \ge \frac{1}{2}$	
3 a $x>-rac{2}{3}$	b $x \leqslant -4$	x < -22	d $x \ge \frac{9}{5}$
	f $x \ge 6$		
EXERCISE 2J			
1 a $x = \frac{15}{2}$	b $x = 6$	$x = \frac{28}{2}$	d $x = \frac{15}{2}$

a $x = \frac{15}{2}$ **b** x = 6**c** $x = \frac{28}{3}$ **d** $x = \frac{15}{8}$ $x = \frac{7}{5}$ f $x = -\frac{13}{2}$

- **2** The equation can be simplified to 16 = 15. But there are no values of x for which this is true. So, the equation has no solutions.
- $x = -\frac{10}{3}$ $d x = \frac{1}{5}$ 3 a x=1**b** x = 4x = 21x = -15

EXERCISE 2K

1	a	$x = \pm 3$	b $x = \pm 7$	$x = \pm 6$
	d	x = 0	$e x = \pm 1$	f $x = \pm \sqrt{17}$
	9	$x = \pm \sqrt{23}$	h $x = \pm 10$	i no real solutions
	j	no real solutions	k $x = \pm \sqrt{27}$	no real solutions
2	a	x = 2	b $x = 3$	x = 0
	d	x = 4	e x = -1	f $x = -5$
	9	$x = \frac{1}{2}$	h $x = \sqrt[3]{36}$ (≈ 3.3	30)
3	a	$x = \pm 2$	b $x = \pm 3$	$x = \pm 5$
	d	$x = \pm 4$	\bullet $x = \pm 6$	f $x = \pm 5$
	9	$x=\pm\sqrt{50}$ (or	$\pm 5\sqrt{2}$) h $x = \pm$	$\sqrt{44}$ (or $\pm 2\sqrt{11}$)
	i,	$x = \pm \sqrt{12}$		
4	a	x = 1	b $x = -2$	c $x = 6$
	d	x = 100	$x = \sqrt[3]{16} \ (\approx 2.5)$	52)
	f	$x = -\sqrt[3]{800}$ (\approx	(-9.28)	

EXERCISE 2L

1	a $P = 23$ b	P = 9 c $P =$	0 d $P = -26$
2	a $ pprox 25.1 {\rm cm}$	b ≈ 34.6 m	$\epsilon~pprox 49.3~{ m cm}$
3	a 44.1 m	b ≈ 129 m	
4	a $\approx 5.03~{\rm km}$	b $\approx 11.3 \text{ km}$	${f c}~pprox 15.9~{ m km}$
5	a $80 \text{ km} \text{h}^{-1}$	b 260 km	$\mathbf{c}~pprox 7~\mathrm{h}~52~\mathrm{min}$
6	a 0.48 volts	b 60 ohms	
7	a $pprox7920~{ m cm}^3$	b $\approx 1.59~{ m cm}$	$c \approx 5.95 \ \mathrm{mm}$
EXE	RCISE 2M		
1	a $y = \frac{4-x}{2}$	b $y = \frac{7 - 2x}{6}$	$y = \frac{11 - 3x}{4}$
	d $y = \frac{8-5x}{4}$	$y = \frac{20 - 7x}{2}$	f $y = \frac{38 - 11x}{15}$

2 a $y = \frac{x}{2}$ b $y = \frac{2x}{6}$ c $y = \frac{5x+12}{4}$ d $y = \frac{4x-18}{5}$ e $y = \frac{7x-42}{6}$ f $y = \frac{12x+44}{13}$ 3 a $x = b - a$ b $x = \frac{b}{a}$ c $x = \frac{d-a}{2}$ d $x = t - c$ e $x = \frac{d-3y}{7}$ f $x = \frac{c-by}{a}$ g $x = \frac{c+y}{m}$ h $x = \frac{c-p}{2}$ i $x = \frac{a-t}{3}$ j $x = \frac{n-5}{k}$ k $x = \frac{a-n}{b}$ l $x = \frac{a-p}{n}$ 4 a $x = ab$ b $x = \frac{a}{d}$ c $x = \frac{2}{p}$	21 a 270 min b 34 min c 323 min 22 a 3 h 31 min b 6 h 5 min c 3 h 5 min 22 a 3 h 31 min b 6 h 5 min c 3 h 5 min 23 a 74.08 km h ⁻¹ b $\approx 10.8 kn$ c $\approx 15.3 m s^{-1}$ 23 a 74.08 km h ⁻¹ e $\approx 1.06 m s^{-1}$ f 4.464 km h^{-1} 24 71 km h ⁻¹ $\approx 19.7 m s^{-1}$ \therefore 20.8 m s^{-1} is faster. 25 a 273.15 K b 27 kWh c 6.482 km 26 a 26.58 μs b 3200 nm c 2.53 GL d 200 μg e 0.6 mL f 0.0685 mg EXERCISE 38 1 a 11.7 m b 35 mm c 6.2 km 1 a 11.7 m b 35 mm c 6.2 km g $(5x - 2) km$ h (6y - 8) cm i 8x m
5 $y = -\frac{5}{3}x + 6$, $m = -\frac{5}{3}$, $c = 6$ R - 2t	220 m
6 a $s = \frac{15}{5}$ b i $s = 2$ ii $s = -4$ iii $s = \frac{12}{5}$ 7 a $x = \frac{t}{2M_{21}}$ b i $x = \frac{1}{15}$ ii $x = \frac{5}{4}$	300 m 3 a 132 m b 650 m c 66 posts d \$1097.70
8 a $r = \sqrt{\frac{A}{\pi}} \{r > 0\}$	4 a 19.2 m b \$19.84 5 a ≈ 25.13 cm b ≈ 16.34 m c ≈ 7.969 cm d ≈ 38.05 m
b i ≈ 1.13 cm ii ≈ 1.99 cm iii ≈ 2.82 cm 9 a $d = st$ i 180 km ii 120 km iii $126\frac{2}{3}$ km d	6a $\approx 10.7 \text{ m}$ b $\approx 44.3 \text{ m}$ c $\approx 410 \text{ mm}$ 7 $\approx 1285 \text{ m}$ 8a 91.5 mb $\approx 156 \text{ m}$ 9a $\approx 11.9 \text{ m}$ b $\approx 5.20 \text{ m}$ 10 $\approx 1.27 \text{ m}$
3 hours 4 hours 11 2 h 12 min	
EXERCISE 3A 1 a 82.5 m b 29.5 cm c 6.25 km d 7.38 cm e 0.2463 m f 0.009 761 km 2 a 4130 mm b 3754 000 m c 482 900 cm d 26 900 mm e 47 000 cm f 3 880 000 mm 3 2.55 km 4 2800 candles 5 13 ells 6 a 0.056 m ² b 0.55 cm ² c 0.000 008 43 km ² d 0.382 ha e 0.0721 km ² f 9.89 m ² 7 a 210 mm ² b 3800 cm ² c 480 ha d 59 m ² e 832 500 m ² f 130 000 m ² 8 ≈ 845 m ² 9 180 panels 10 a 39.1 m ³ b 510 mm ³ c 0.469 m ³ d 3820 000 cm ³ e 0.005 27 cm ³ f 17 900 cm ³ g 692 cm ³ h 0.183 46 m ³ i 5100 cm ³ 11 5 000 000 ball bearings 12 ≈ 0.216 m ³	d 6 cm ² e 24 cm ² f 18 cm ² 2 a $\approx 113.1 \text{ m}^2$ b $\approx 63.6 \text{ cm}^2$ c $\approx 77.0 \text{ cm}^2$ 3 a $(2x^2 + 9x + 4) \text{ cm}^2$ b $\pi y^2 \text{ mm}^2$ c $\frac{5x^2 + 3x}{2} \text{ m}^2$ d $\frac{3x^2 + 3x}{2} \text{ cm}^2$ e $(y^2 + 2y) \text{ cm}^2$ f $2\pi x^2 \text{ cm}^2$ 4 a 83 cm ² b 506 cm ² c 143 m ² 5 a 125 cm ² b $\approx 76.0 \text{ cm}^2$ c 90 cm ² 6 a $A = 2k^2$ b $A = \frac{\pi(z^2 - y^2)}{2}$ c $A = (\pi - 2)x^2$ 7 55 cm ² 8 the medium pizza 9 a $\approx 48.6 \text{ m}$ b 221 bricks c $\approx 147 \text{ m}^2$ d $\approx \$3250.20$ 10 a 43.2 m ² b Size B slab is half the area of size A slab. Every 2nd row you
EXERCISE 3A 1 a 82.5 m b 29.5 cm c 6.25 km d 7.38 cm e 0.2463 m f 0.009 761 km 2 a 4130 mm b 3754 000 m c 482 900 cm d 26 900 mm e 47 000 cm f 3 880 000 mm 3 2.55 km 4 2800 candles 5 13 ells 6 a 0.056 m ² b 0.55 cm ² c 0.000 008 43 km ² d 0.382 ha e 0.0721 km ² f 9.89 m ² 7 a 210 mm ² b 3800 cm ² c 480 ha d 59 m ² e 832 500 m ² f 130 000 m ² 8 ≈ 845 m ² 9 180 panels 10 a 39.1 m ³ b 510 mm ³ c 0.469 m ³ d 3 820 000 cm ³ e 0.005 27 cm ³ f 17 900 cm ³ g 692 cm ³ h 0.183 46 m ³ i 5100 cm ³ 11 5000 000 ball bearings 12 \approx 0.216 m ³ 13 a 4210 mL b 8630 L c 4.6 L d 56.9 kL e 0.003 97 kL f 12 000 mL 14 40 755.2 L 15 1860 bottles f 14 40 755.2 L 16 a 5900 g b 2.6	d 6 cm^2 e 24 cm^2 f 18 cm^2 2 a $\approx 113.1 \text{ m}^2$ b $\approx 63.6 \text{ cm}^2$ c $\approx 77.0 \text{ cm}^2$ 3 a $(2x^2 + 9x + 4) \text{ cm}^2$ b $\pi y^2 \text{ mm}^2$ c $\frac{5x^2 + 3x}{2} \text{ m}^2$ d $\frac{3x^2 + 3x}{2} \text{ cm}^2$ e $(y^2 + 2y) \text{ cm}^2$ f $2\pi x^2 \text{ cm}^2$ 4 a 83 cm^2 b 506 cm^2 c 143 m^2 5 a 125 cm^2 b $\approx 76.0 \text{ cm}^2$ c 90 cm^2 6 a $A = 2k^2$ b $A = \frac{\pi(z^2 - y^2)}{2}$ c $A = (\pi - 2)x^2$ 7 55 cm^2 8 the medium pizza 9 a $\approx 48.6 \text{ m}$ b 221 bricks c $\approx 147 \text{ m}^2$ d $\approx \$3250.20$ 10 a 43.2 m^2 b Size B slab is half the area of size A slab. Every 2nd row you need 2 size B slabs, so you need 4 size B slabs in total. c 118 size A slabs d 2.6 tonnes e $\$835.20$

4	a 840 km	$\mathbf{b}~pprox 17.2~\mathrm{km}$	c 20.3 m
5	$\approx 274 \text{ km}$	b ≈ 5.60 h	$\approx 48.9 \mathrm{km}\mathrm{h}^{-1}$
EXI			
1	a $\sqrt{34}$ cm	$\sqrt{20}$ cm	$\sqrt{72}$ cm
	d $\sqrt{250}$ km	≈ 21.5 cm	$f \approx 8.38 \text{ cm}$
2	a 8 cm	b $\sqrt{15}$ cm	$\sqrt{24}$ km
	d $ pprox 2.53 \; { m km}$	$e \sqrt{3}$ m	f ≈ 8.98 cm
3	a $x=\sqrt{7}$	b $x = \sqrt{5}$	$x = \sqrt{8}$
	d $x=\sqrt{rac{13}{16}}$	\bullet $x=1$	f $x=rac{1}{2}$
4	a $x=\sqrt{48}$	b $x = \sqrt{13}$	$x = \sqrt{3}$
	d $x=\sqrt{7}$	$\bullet \ x = \sqrt{3}$	f $x = 1$
5	a $x = \sqrt{21}, y = -$	$\sqrt{5}$ b $x =$	= 4, $y = \sqrt{17}$
	• $x = \sqrt{2}, y = \sqrt{2}$	3	
6	a $x=\sqrt{14}$	b $x=\sqrt{rac{97}{4}}$ ($pprox$	= 4.92)
7	a AB = $\sqrt{10}$ cm	b AB = $\sqrt{20}$ cm	n c AB = $\sqrt{33}$ m
8	a 30 m^2	$\mathbf{b}~pprox 5.66~\mathrm{m}^2$	
EXI	ERCISE 4B		
1	a not right angled	b right angled	• not right angled
	d not right angled	e right angled	f right angled
2	a right angle at A	b right angle at I	B c right angle at C
EXI	ERCISE 4C		E
1	a 10 cm b	$\sqrt{18}$ m (≈ 4.24 m)) 2 20 mm
3	a $\sqrt{96}$ mm (≈ 9.8	30 mm) b $5\sqrt{90}$	$6 \text{ mm}^2 \ (\approx 49.0 \text{ mm}^2)$
4	$10 \text{ m} \times 30 \text{ m}$ 5	$\sqrt{5}$ cm 6 $\sqrt{3}$	$162 \text{ cm} \ (\approx 12.7 \text{ cm})$
7	a $x = \sqrt{\frac{97}{4}}$ (≈ 4	$(.92) b x \approx$	* 8.58
8	a $2\sqrt{39}$ m (≈ 12 .	5 m) b 10γ	$\sqrt{39} \text{ m}^2 \ (\approx 62.4 \text{ m}^2)$
9	a $\sqrt{20}~{ m cm}~(pprox 4.4$	7 cm) b $2\sqrt{2}$	$\overline{20} \text{ cm}^2 \ (\approx 17.9 \text{ cm}^2)$
10	5 cm 11 12 mr	m 12 a 90°	b $a^2 + b^2 = c^2$
13	a $x = 4$ b a	x = 5 c $x =$	$=\sqrt{208}~(\approx 14.4)$
14	5 cm 15 29 mr	n b PC	is not a diameter
EVI		U BC	is not a diameter.
EXI	ERCIDE 4D ~ 0.663	$m \sim 4.34$	$m \sim 2.22$
2	$x \sim 0.003$ $a \approx 4.54 \text{ m}$	$x \sim 4.34$ $a \approx 4.17 \text{ m}$	$x \sim 2.23$ 3 ≈ 17.5 km
4	≈ 87.1 km 5	a $pprox 2.66~{ m km}$	b $\approx 16 \text{ min}$
6	a $ pprox 92.4 { m cm}$	$m b~pprox 1.85~{ m m}^2$	
7	a Jack 30 km, Wil	1 38 km b \approx 4	48.4 km
8	$\approx 6.97 \text{ cm}$ 9	a $\approx 73.9 \text{ m}$	b $\approx 30.9 \text{ m}$
10	$a \approx 44.0$ km to A	and ≈ 61.6 km to	$B = B \approx 2480000
11	$\approx 72 \text{ m}$ 12 6 $\approx 14.6 \text{ cm}$ 15 \approx	cm 13 a ≤ 17.3 cm 16 a	$\approx 33.1 \text{ m}$ $\approx 8.60 \text{ m}$ 17 ves
18	$\approx 1.92 \text{ m}$ 19 \approx	≈ 53.4 m 20 ≈	≈ 44.4 km
EXI	ERCISE 5A		
1	a $\sqrt{10}$ units b	$\sqrt{13}$ units $\sqrt{53}$	$\overline{8}$ units d $\sqrt{20}$ units
	e 2 units f	$\sqrt{20}$ units g 5 un	nits h $\sqrt{53}$ units
2	a $\sqrt{45}$ km ($pprox 6.7$	1 km) b $\sqrt{9}$	$\overline{7}$ km (≈ 9.85 km)
	c 5 km d	10 km	

			ANSWERS	107
3	a	$AB = \sqrt{10}, BC = \sqrt{10}, AC = \sqrt{10}$ Triangle ABC is isosceles	32	
	ь	$AB = \sqrt{73} BC = \sqrt{50} AC = \sqrt{70}$	17	
	Ŭ	Triangle ABC is scalene. $AC = V$	11	
	c	AB = 2, $BC = 2$, $AC = 2$		
		Triangle ABC is equilateral.		
	d	$AB = \sqrt{28}, BC = \sqrt{48}, AC = \sqrt{7}$ Triangle ABC is isosceles.	28	
4	a	$AB = \sqrt{13}, BC = \sqrt{65}, AC = \sqrt{65}$	52	
		Triangle ABC is right angled at A.		
	Ь	$AB = \sqrt{20}, BC = \sqrt{20}, AC = \sqrt{20}$	$\overline{40}$	
		Triangle ABC is right angled at B.		
	c	$AB = \sqrt{10}, BC = \sqrt{40}, AC = \sqrt{2}$	10	
		Triangle ABC is not right angled.		
	d	$AB = \sqrt{85}, BC = \sqrt{17}, AC = \sqrt{17}$	<u>68</u>	
		Triangle ABC is right angled at C.		
5	a	$AB = \sqrt{50}, BC = \sqrt{50}, AC = \sqrt{Triangle ABC}$ is isosceles.	180	
	Ь	$AB = \sqrt{65}, BC = \sqrt{13}, AC = \sqrt{13}$	52	
		Triangle ABC is a scalene right angle	ed triangle, with	ı right
		angle at C.		
	C	$AB = \sqrt{10}, BC = \sqrt{20}, AC = \sqrt{20}$	10	
		Triangle ABC is an isosceles right angle at A	led triangle, with	i right
		angle at A. $\sqrt{12}$ DC $\sqrt{12}$ AC $\sqrt{12}$	10	
	a	$AB = \sqrt{12}, BC = \sqrt{12}, AC = \sqrt{12}$ Triangle ABC is equilateral	12	
		mangle ADC is equilateral.		
XE	RCI	SE 5B		
1	а	(2, 3) b $(1, -3)$ c $(-2,$	3) d (1, 1	.)
	e	$(3,1)$ f $(0,-1)$ g $(0,\frac{1}{2})$) h (3, -	-1)
9	a	(3.6) b $(\frac{5}{4})$ c (1.1)	$\frac{1}{2}$) d (3 (n)
		(1, 2) $(1, 1)$ $(1, 1)$	$\frac{2}{1}$ b (0, 0)	$\frac{1}{1}$ (1)
	e	$(\frac{1}{2}, 3)$ $(-1, 1)$ $(-\frac{1}{2}, -1)$	(-2)	$\frac{1}{2}, 4$
3	a	(3, -5) b $(-2, 3)$ c $(-1, -1)$	5) d $(4, -$	-2)
	e	$(4, -1)$ f $(3, -\frac{1}{2})$		
4	a	(0, -9) b $(5, -5)$ 5 $(1, -5)$	•5) 6 (5, -	-2)
7	a	$(-5, 4)$ b $\sqrt{10}$ km (≈ 3.16 km	a) 8 (0, 1	L)
9	a	(9, -2) b $(3, 7)$ c $(0, -1)$	5)	
0	a	i $P(2, 5)$ ii $Q(9, 4)$ iii $R(4, 4)$	-1) iv S(-:	3, 0)
	ь	$\sqrt{50}$ units $\sqrt{50}$ units	$\sqrt{50}$ uni	ts
		$\sqrt{50}$ units	v so un	
	c	PORS is a rhombus		
		r yrto is a momous.		
VE	DCI			

